Abstract

The autocorrelation of a modulated coherent light source is used as a probe pulse in a time-domain interferometry scheme. With respect to conventional techniques, higher flexibility in selecting the shape of the probe pulse can be achieved by simply acting on the modulation parameters. The complex amplitude of short pulses propagating through a generic optical device can be directly measured, with no need for fast sampling and time synchronization. The potentialities of the technique are shown by reporting measurements of amplitude distortion, group delay, and frequency chirp of optical pulses transmitted through integrated ring resonators.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Rothenberg and D. R. Grischkowsky, Opt. Lett. 12, 99 (1987).
    [CrossRef] [PubMed]
  2. R. Rokitski, P.-C. Sun, and Y. Fainman, Opt. Lett. 26, 1125 (2001).
    [CrossRef]
  3. K. Naganuma, K. Mogi, and H. Yamada, Opt. Lett. 15, 393 (1990).
    [CrossRef] [PubMed]
  4. W. H. Knox, N. M. Pearson, K. D. Li, and C. A. Hirlimann, Opt. Lett. 13, 574 (1988).
    [CrossRef] [PubMed]
  5. U. Wiedmann, P. Gallion, and G.-H. Duan, J. Lightwave Technol. 16, 1343 (1998).
    [CrossRef]
  6. J. G. Proakis, Digital Signal Processing. Principles, Algorithms and Applications (Prentice-Hall, 1996).
  7. F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.
  8. A. Melloni and F. Morichetti, Phys. Rev. Lett. 98, 173902 (2007).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  10. J. Y. Lee and D. Y. Kim, Appl. Opt. 46, 7289 (2007).
    [CrossRef] [PubMed]

2007 (2)

A. Melloni and F. Morichetti, Phys. Rev. Lett. 98, 173902 (2007).
[CrossRef]

J. Y. Lee and D. Y. Kim, Appl. Opt. 46, 7289 (2007).
[CrossRef] [PubMed]

2004 (1)

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

2001 (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

R. Rokitski, P.-C. Sun, and Y. Fainman, Opt. Lett. 26, 1125 (2001).
[CrossRef]

1998 (1)

1996 (1)

J. G. Proakis, Digital Signal Processing. Principles, Algorithms and Applications (Prentice-Hall, 1996).

1990 (1)

1988 (1)

1987 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cabas, A.

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Costa, R.

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Cusmai, G.

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Duan, G.-H.

Fainman, Y.

Feré, M.

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Gallion, P.

Grischkowsky, D. R.

Hirlimann, C. A.

Kim, D. Y.

Knox, W. H.

Lee, J. Y.

Li, K. D.

Martinelli, M.

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Melloni, A.

A. Melloni and F. Morichetti, Phys. Rev. Lett. 98, 173902 (2007).
[CrossRef]

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Mogi, K.

Morichetti, F.

A. Melloni and F. Morichetti, Phys. Rev. Lett. 98, 173902 (2007).
[CrossRef]

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Naganuma, K.

Pearson, N. M.

Proakis, J. G.

J. G. Proakis, Digital Signal Processing. Principles, Algorithms and Applications (Prentice-Hall, 1996).

Rokitski, R.

Rothenberg, J. E.

Sun, P.-C.

Ubaldi, M. C.

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Wiedmann, U.

Yamada, H.

Appl. Opt. (1)

J. Lightwave Technol. (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. Melloni and F. Morichetti, Phys. Rev. Lett. 98, 173902 (2007).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

J. G. Proakis, Digital Signal Processing. Principles, Algorithms and Applications (Prentice-Hall, 1996).

F. Morichetti, R. Costa, G. Cusmai, A. Cabas, M. Feré, M. C. Ubaldi, A. Melloni, and M. Martinelli, in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper FC8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the OCPI experimental setup. (b) Measured envelope of the probe pulse R p ( τ ) when the OCPI source is intensity modulated with 3.3 Gbits s (solid curve) and 10 Gbits s (dashed curve) OOK NRZ format.

Fig. 2
Fig. 2

(a) Measured power transmission and group delay of the ring resonator PS shown in the inset. Chromium heaters deposited onto the waveguide enable the thermal control of the ring’s resonance; (b) simulated and measured pulse envelopes at the output of the PS when the carrier frequency f 0 is detuned with respect to the PS spectrum at the frequencies marked in (a). Time scale is normalized by attributing zero delay to the pulse propagating off-resonance.

Fig. 3
Fig. 3

Simulated (dashed curves) and measured (solid curves) power and phase of the pulse outgoing the PS at the ring’s resonance ( f 0 = f R ) .

Fig. 4
Fig. 4

(a) Measured time evolution of the pulse phase at the PS output in anomalous dispersion ( f 0 = f R + 1.5 GHz ; dashed curve, blue online) and normal dispersion ( f 0 = f R 1.5 GHz ; solid curve, red online) regime; (b) shift of the instantaneous frequency across the pulse outgoing the PS. The black curves show the output pulse envelope at the two regimes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U ( τ ) = Re [ γ ( τ ) * h ( t ) ] cos ( 2 π f 0 τ )
γ ( τ ) = 1 T m = R A ( m ) R p ( τ m T )

Metrics