Abstract

Spectral phase ripple associated with novel dispersive devices can distort broadband optical signals. We present a digital postprocessing algorithm to correct for this distortion by exploiting the static deterministic nature of the ripple. This algorithm is demonstrated with empirical data for several systems employing chirped fiber Bragg gratings (CFBGs). We employ this technique in a photonic time-stretch system incorporating CFBGs, improving the signal fidelity by 9dB. Simulations and experiments show that this algorithm, which can be reduced to a simple interpolation and matrix multiplication, also mitigates additive noise. We see that the act of distortion correction yields signal fidelity superior to that of an ideal dispersive element.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription