Abstract

We show that the degree of light-speed control in a semiconductor optical amplifier can be significantly extended by the introduction of optical filtering. We achieve a phase shift of 150° at 19GHz modulation frequency, corresponding to a several-fold increase of the absolute phase shift as well as the achievable bandwidth. We show good quantitative agreement with numerical simulations, including the effects of population oscillations and four-wave mixing, and provide a simple physical explanation based on an analytical perturbation approach.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Su and S. L. Chuang, Opt. Lett. 31, 271 (2006).
    [CrossRef] [PubMed]
  2. C. J. Chang-Hasnain and S. L. Chuang, J. Lightwave Technol. 24, 4642 (2006).
    [CrossRef]
  3. P. K. Kondratko and S. L. Chuang, Opt. Express 15, 9963 (2007).
    [CrossRef] [PubMed]
  4. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, Opt. Express 13, 8136 (2005).
    [CrossRef] [PubMed]
  5. F. Öhman, K. Yvind, and J. Mørk, Opt. Express 14, 9955 (2006).
    [CrossRef] [PubMed]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  7. F. Öhman, K. Yvind, and J. Mørk, IEEE Photon. Technol. Lett. 19, 1145 (2007).
    [CrossRef]
  8. A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
    [CrossRef]
  9. A. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
    [CrossRef]
  10. H. Su, P. Kondratko, and S. L. Chuang, Opt. Express 14, 4800 (2006).
    [CrossRef] [PubMed]
  11. J. Capmany, B. Ortega, D. Pastor, and S. Sales, J. Lightwave Technol. 23, 702 (2005).
    [CrossRef]
  12. R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
    [CrossRef]

2007 (2)

P. K. Kondratko and S. L. Chuang, Opt. Express 15, 9963 (2007).
[CrossRef] [PubMed]

F. Öhman, K. Yvind, and J. Mørk, IEEE Photon. Technol. Lett. 19, 1145 (2007).
[CrossRef]

2006 (6)

2005 (3)

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Capmany, J.

Chang-Hasnain, C. J.

A. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

C. J. Chang-Hasnain and S. L. Chuang, J. Lightwave Technol. 24, 4642 (2006).
[CrossRef]

A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
[CrossRef]

Chuang, S. L.

Kjær, R.

Kondratko, P.

Kondratko, P. K.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Minasian, R. A.

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

Mørk, J.

Öhman, F.

F. Öhman, K. Yvind, and J. Mørk, IEEE Photon. Technol. Lett. 19, 1145 (2007).
[CrossRef]

F. Öhman, K. Yvind, and J. Mørk, Opt. Express 14, 9955 (2006).
[CrossRef] [PubMed]

Ortega, B.

Pastor, D.

Sales, S.

Sedgwick, F. G.

A. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

Su, H.

Uskov, A.

A. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
[CrossRef]

van der Poel, M.

Yvind, K.

Electron. Lett. (1)

A. Uskov and C. J. Chang-Hasnain, Electron. Lett. 41, 55 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 18, 731 (2006).
[CrossRef]

F. Öhman, K. Yvind, and J. Mørk, IEEE Photon. Technol. Lett. 19, 1145 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. PC, polarization controller; VOA, variable optical attenuator; MZM, Mach–Zehnder modulator.

Fig. 2
Fig. 2

(a) Phase shifts and (b) ac power versus the input optical power. The markers are experimental data taken at a modulation frequency of 19 GHz . The solid curves are simulation results. (Main model parameters: saturation power P sat = 10 dBm , carrier lifetime τ s = 100 ps , the product of linear modal gain g 0 and the SOA length L g 0 L = 5.75 , linewidth enhancement factor α = 6 , and internal loss a L = 2.75 .)

Fig. 3
Fig. 3

(a) Phase shifts and (b) relative ac power changes versus rf modulation frequency for the input optical power levels of 3.4 dBm (solid curve) and 13.6 dBm (dotted curve).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( t , z ) = [ E 0 ( z ) + E 1 ( z ) exp ( i Ω t ) + E + 1 ( z ) exp ( i Ω t ) ] exp ( i ω 0 t i β 0 z ) .
E ̃ + 1 ( δ L ) = ε [ 1 + γ 1 + α β 1 + i β 1 i α γ 1 ] ,
E ̃ 1 * ( δ L ) = ε [ 1 + γ 1 α β 1 + i β 1 + i α γ 1 ] .
γ 1 = g sat ( 1 + S ) S ( 1 + S ) 2 + ( Ω τ s ) 2 δ L ,
β 1 = g sat Ω τ s S ( 1 + S ) 2 + ( Ω τ s ) 2 δ L ,
δ φ = arg { E ̃ + 1 ( δ L ) + E ̃ 1 * ( δ L ) } S arg { E ̃ + 1 ( δ L ) + E ̃ 1 * ( δ L ) } S ref 0 .

Metrics