Abstract

We apply the screw triangle method (STM), which was conventionally used in the field of mechanism design, to design a prism to produce a specified image orientation change (IOC). Compared to existing methods [Tsai and Lin, Appl. Opt.45, 3951 (2006); Appl. Opt.46, 3087 (2007)], the proposed method is both simpler and more efficient, since its derivations are essentially vector-based calculations. The validity of the proposed approach is demonstrated via an illustrative example.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Smith, Modern Optical Engineering, 3rd ed. (Edmund Industrial Optics, 2001), pp. 100-121.
  2. C. Y. Tsai and P. D. Lin, Appl. Opt. 45, 3951 (2006).
    [CrossRef]
  3. C. Y. Tsai and P. D. Lin, Appl. Opt. 46, 3087 (2007).
    [CrossRef]
  4. B. Roth, J. Eng. Ind. 89, 102 (1967).
  5. L. W. Tsai and B. Roth, Mech. Mach. Theory 7, 85 (1972).
    [CrossRef]
  6. J. S. Dai, Mech. Mach. Theory 41, 41 (2006).
    [CrossRef]
  7. H. Lipkin and J. Duffy, Proc. Inst. Mech. Eng., IMechE Conf. 216, 1 (2002).
  8. R. P. Paul, Robot Manipulators--Mathematics, Programming and Control (MIT Press, 1982).
  9. M. R. Spiegel, Schaum's Outline of Vector Analysis (McGraw-Hill, 1989).

2007 (1)

2006 (2)

2002 (1)

H. Lipkin and J. Duffy, Proc. Inst. Mech. Eng., IMechE Conf. 216, 1 (2002).

2001 (1)

W. J. Smith, Modern Optical Engineering, 3rd ed. (Edmund Industrial Optics, 2001), pp. 100-121.

1989 (1)

M. R. Spiegel, Schaum's Outline of Vector Analysis (McGraw-Hill, 1989).

1982 (1)

R. P. Paul, Robot Manipulators--Mathematics, Programming and Control (MIT Press, 1982).

1972 (1)

L. W. Tsai and B. Roth, Mech. Mach. Theory 7, 85 (1972).
[CrossRef]

1967 (1)

B. Roth, J. Eng. Ind. 89, 102 (1967).

Dai, J. S.

J. S. Dai, Mech. Mach. Theory 41, 41 (2006).
[CrossRef]

Duffy, J.

H. Lipkin and J. Duffy, Proc. Inst. Mech. Eng., IMechE Conf. 216, 1 (2002).

Lin, P. D.

Lipkin, H.

H. Lipkin and J. Duffy, Proc. Inst. Mech. Eng., IMechE Conf. 216, 1 (2002).

Paul, R. P.

R. P. Paul, Robot Manipulators--Mathematics, Programming and Control (MIT Press, 1982).

Roth, B.

L. W. Tsai and B. Roth, Mech. Mach. Theory 7, 85 (1972).
[CrossRef]

B. Roth, J. Eng. Ind. 89, 102 (1967).

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 3rd ed. (Edmund Industrial Optics, 2001), pp. 100-121.

Spiegel, M. R.

M. R. Spiegel, Schaum's Outline of Vector Analysis (McGraw-Hill, 1989).

Tsai, C. Y.

Tsai, L. W.

L. W. Tsai and B. Roth, Mech. Mach. Theory 7, 85 (1972).
[CrossRef]

Appl. Opt. (2)

J. Eng. Ind. (1)

B. Roth, J. Eng. Ind. 89, 102 (1967).

Mech. Mach. Theory (2)

L. W. Tsai and B. Roth, Mech. Mach. Theory 7, 85 (1972).
[CrossRef]

J. S. Dai, Mech. Mach. Theory 41, 41 (2006).
[CrossRef]

Proc. Inst. Mech. Eng., IMechE Conf. (1)

H. Lipkin and J. Duffy, Proc. Inst. Mech. Eng., IMechE Conf. 216, 1 (2002).

Other (3)

R. P. Paul, Robot Manipulators--Mathematics, Programming and Control (MIT Press, 1982).

M. R. Spiegel, Schaum's Outline of Vector Analysis (McGraw-Hill, 1989).

W. J. Smith, Modern Optical Engineering, 3rd ed. (Edmund Industrial Optics, 2001), pp. 100-121.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics