Abstract

We present, for the first time based on our knowledge, a novel in-fiber optical phase modulator that is inherently broadband, efficient, and polarization-maintaining (PM). The modulator is a 25mm long section of a D-shaped cladding PM fiber with half of its silica cladding replaced with an electro-optic (EO) silicone gel. A phase modulation of more than πrad has been demonstrated. We describe techniques that enable the long-distance exposure of the fiber core, microfabrication of on-fiber electrodes, a low refractive index EO cladding material for replacing silica fiber cladding, and accurate phase measurement utilizing a Sagnac interferometer.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).
  2. R. B. Dyott, “Method for making self-aligning optical fiber with accessible guiding region,” U.S. patent 4,668,264 (May 26, 1987).
  3. K. H. Smith, D. J. Markos, B. L. Ipson, S. M. Schultz, R. H. Selfridge, J. P. Barber, K. J. Campbell, T. D. Monte, and R. B. Dyott, Appl. Opt. 43, 933 (2004).
    [CrossRef] [PubMed]
  4. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, Opt. Lett. 19, 466 (1994).
    [CrossRef] [PubMed]
  5. M. G. Kuzyk, U. C. Paek, and C. Dirk, Appl. Phys. Lett. 59, 902 (1991).
    [CrossRef]
  6. T. T. Alkeskjold, J. Lægsgaard, A. BjarklevD. S. Hermann, A. J. Broeng, J. Li, and S.-T. Wu, Opt. Express 12, 5857 (2004).
    [CrossRef] [PubMed]
  7. T. D. Monte, L. Wang, and R. Dyott, “Elliptical core and D-shape fibers” in Specialty Optical Fibers Handbook, A.Méndez and T.F.Morse, eds. (Academic, 2007), pp. 513-561.
  8. A. Ashkin and R. H. Stolen, “Exposed core optical fibers, and method of making same,” U.S. patent 4,630,890 (December 23, 1986).
  9. F. Chaput, D. Riehl, Y. Levy, and J. P. Boilot, Chem. Mater. 5, 589 (1993).
    [CrossRef]
  10. A. Chen, V. Chuyanov, S. Garner, H. Zhang, W. H. Sterier, J. Chen, J. Zhu, F. Wang, M. He, S. S. H. Mao, and L. R. Dalton, Opt. Lett. 23, 478 (1998).
    [CrossRef]
  11. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
    [CrossRef]
  12. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
    [CrossRef] [PubMed]

2007 (1)

T. D. Monte, L. Wang, and R. Dyott, “Elliptical core and D-shape fibers” in Specialty Optical Fibers Handbook, A.Méndez and T.F.Morse, eds. (Academic, 2007), pp. 513-561.

2004 (2)

2002 (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

2000 (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

1998 (1)

1994 (1)

1993 (2)

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

F. Chaput, D. Riehl, Y. Levy, and J. P. Boilot, Chem. Mater. 5, 589 (1993).
[CrossRef]

1991 (1)

M. G. Kuzyk, U. C. Paek, and C. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

1987 (1)

R. B. Dyott, “Method for making self-aligning optical fiber with accessible guiding region,” U.S. patent 4,668,264 (May 26, 1987).

1986 (1)

A. Ashkin and R. H. Stolen, “Exposed core optical fibers, and method of making same,” U.S. patent 4,630,890 (December 23, 1986).

Alkeskjold, T. T.

Ashkin, A.

A. Ashkin and R. H. Stolen, “Exposed core optical fibers, and method of making same,” U.S. patent 4,630,890 (December 23, 1986).

Barber, J. P.

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

Bjarklev, A.

Boilot, J. P.

F. Chaput, D. Riehl, Y. Levy, and J. P. Boilot, Chem. Mater. 5, 589 (1993).
[CrossRef]

Broeng, A. J.

Campbell, K. J.

Chaput, F.

F. Chaput, D. Riehl, Y. Levy, and J. P. Boilot, Chem. Mater. 5, 589 (1993).
[CrossRef]

Chen, A.

Chen, J.

Chuyanov, V.

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

A. Chen, V. Chuyanov, S. Garner, H. Zhang, W. H. Sterier, J. Chen, J. Zhu, F. Wang, M. He, S. S. H. Mao, and L. R. Dalton, Opt. Lett. 23, 478 (1998).
[CrossRef]

Digonnet, M. J. F.

Dirk, C.

M. G. Kuzyk, U. C. Paek, and C. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

Dyott, R.

T. D. Monte, L. Wang, and R. Dyott, “Elliptical core and D-shape fibers” in Specialty Optical Fibers Handbook, A.Méndez and T.F.Morse, eds. (Academic, 2007), pp. 513-561.

Dyott, R. B.

K. H. Smith, D. J. Markos, B. L. Ipson, S. M. Schultz, R. H. Selfridge, J. P. Barber, K. J. Campbell, T. D. Monte, and R. B. Dyott, Appl. Opt. 43, 933 (2004).
[CrossRef] [PubMed]

R. B. Dyott, “Method for making self-aligning optical fiber with accessible guiding region,” U.S. patent 4,668,264 (May 26, 1987).

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Garner, S.

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

He, M.

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Hermann, D. S.

Ipson, B. L.

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Kino, G. S.

Kuzyk, M. G.

M. G. Kuzyk, U. C. Paek, and C. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

Lægsgaard, J.

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Lefevre, H. C.

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

Levy, Y.

F. Chaput, D. Riehl, Y. Levy, and J. P. Boilot, Chem. Mater. 5, 589 (1993).
[CrossRef]

Li, J.

Liu, A. C.

Mao, S. S. H.

Markos, D. J.

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Monte, T. D.

T. D. Monte, L. Wang, and R. Dyott, “Elliptical core and D-shape fibers” in Specialty Optical Fibers Handbook, A.Méndez and T.F.Morse, eds. (Academic, 2007), pp. 513-561.

K. H. Smith, D. J. Markos, B. L. Ipson, S. M. Schultz, R. H. Selfridge, J. P. Barber, K. J. Campbell, T. D. Monte, and R. B. Dyott, Appl. Opt. 43, 933 (2004).
[CrossRef] [PubMed]

Paek, U. C.

M. G. Kuzyk, U. C. Paek, and C. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

Riehl, D.

F. Chaput, D. Riehl, Y. Levy, and J. P. Boilot, Chem. Mater. 5, 589 (1993).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

Schultz, S. M.

Selfridge, R. H.

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

Smith, K. H.

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

Sterier, W. H.

Stolen, R. H.

A. Ashkin and R. H. Stolen, “Exposed core optical fibers, and method of making same,” U.S. patent 4,630,890 (December 23, 1986).

Wang, F.

Wang, L.

T. D. Monte, L. Wang, and R. Dyott, “Elliptical core and D-shape fibers” in Specialty Optical Fibers Handbook, A.Méndez and T.F.Morse, eds. (Academic, 2007), pp. 513-561.

Wu, S.-T.

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

A. Chen, V. Chuyanov, S. Garner, H. Zhang, W. H. Sterier, J. Chen, J. Zhu, F. Wang, M. He, S. S. H. Mao, and L. R. Dalton, Opt. Lett. 23, 478 (1998).
[CrossRef]

Zhu, J.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. G. Kuzyk, U. C. Paek, and C. Dirk, Appl. Phys. Lett. 59, 902 (1991).
[CrossRef]

Chem. Mater. (1)

F. Chaput, D. Riehl, Y. Levy, and J. P. Boilot, Chem. Mater. 5, 589 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Science (2)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, Science 288, 119 (2000).
[CrossRef]

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, Science 298, 1401 (2002).
[CrossRef] [PubMed]

Other (4)

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

R. B. Dyott, “Method for making self-aligning optical fiber with accessible guiding region,” U.S. patent 4,668,264 (May 26, 1987).

T. D. Monte, L. Wang, and R. Dyott, “Elliptical core and D-shape fibers” in Specialty Optical Fibers Handbook, A.Méndez and T.F.Morse, eds. (Academic, 2007), pp. 513-561.

A. Ashkin and R. H. Stolen, “Exposed core optical fibers, and method of making same,” U.S. patent 4,630,890 (December 23, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a, Cross-sectional photograph of a core-exposed D-shaped polarization maintaining fiber; b, a schematic cross-section; and c, a side view of the CRF modulator.

Fig. 2
Fig. 2

BeamPROP simulation results showing the percentage of the evanescent light power distributed in (a) the EO material and (b) the insertion loss, as a function of the refractive index of the upper half of the fiber cladding. The composite waveguide has 150 μ m long gradual transitions at both ends of the regular fiber. The inserts are simulated mode-field distributions when the upper cladding index is 1.460 and 1.470, respectively. The width and height of the two photographs are 8 μ m × 8 μ m .

Fig. 3
Fig. 3

All fiber, open-loop FOG system used to measure the phase modulation. SLD, superluminescent diode; PD, photodiode.

Fig. 4
Fig. 4

a, Gyro output at small rotation rates. The rates are ± 0.2 , ± 0.4 , ± 0.6 , ± 0.8 , ± 1.0 , ± 1.2 , ± 1.4 , ± 1.6 , and ± 1.8 , respectively. b, Gyro output as a function of rotation rate. c, Gyro output as a function of modulating voltage applied to the CRF modulator at a constant rate of 20 ° s . The solid curve is a fitting to the first order of the Bessel function. d, Gyro output as a function of modulation frequency using the CRF modulator (filled circles) and a standard PZT modulator (squares), respectively. The solid curve is a fit to the first order of the Bessel function.

Metrics