Abstract

We study the combined effects of dynamic gain saturation and two-photon absorption on the amplification of short pulses in semiconductor optical amplifiers and show that two-photon absorption can saturate the amplifier gain and limit the output pulse energies even for amplifiers with large gain saturation energies. We discuss the upper limits for the pulse energies obtainable from semiconductor optical amplifiers in the presence of two-photon absorption and show that for single transverse mode waveguide amplifiers these upper limits can range from values as small as a few picojoules to several hundred picojoules for pulse widths in the 0.5ps to 20ps range, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Goldberg, D. Mehuys, and D. Welch, IEEE Photon. Technol. Lett. 6, 1070 (1994).
    [CrossRef]
  2. S. Gee, G. Alphonse, J. Connolly, and P. J. Delfyett, IEEE J. Quantum Electron. 4, 209 (1998).
    [CrossRef]
  3. J. J. Plant, J. T. Gopinath, B. Chann, D. J. Ripin, R. K. Huang, and P. W. Juodawlkis, Opt. Lett. 31, 223 (2006).
    [CrossRef] [PubMed]
  4. F. R. Ahmad and F. Rana, IEEE Photon. Technol. Lett. 20, 190 (2008).
    [CrossRef]
  5. Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisenstein, IEEE Photon. Technol. Lett. 2, 711713 (1990).
    [CrossRef]
  6. M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE J. Quantum Electron. 30, 1122 (1994).
    [CrossRef]
  7. F. Rana and P. George, IEEE J. Quantum Electron. 43, 1109 (2007).
    [CrossRef]
  8. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
    [CrossRef]
  9. R. W. Boyd, Nonlinear Optics (Academic, 2003).

2008

F. R. Ahmad and F. Rana, IEEE Photon. Technol. Lett. 20, 190 (2008).
[CrossRef]

2007

F. Rana and P. George, IEEE J. Quantum Electron. 43, 1109 (2007).
[CrossRef]

2006

2003

R. W. Boyd, Nonlinear Optics (Academic, 2003).

1998

S. Gee, G. Alphonse, J. Connolly, and P. J. Delfyett, IEEE J. Quantum Electron. 4, 209 (1998).
[CrossRef]

1994

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE J. Quantum Electron. 30, 1122 (1994).
[CrossRef]

L. Goldberg, D. Mehuys, and D. Welch, IEEE Photon. Technol. Lett. 6, 1070 (1994).
[CrossRef]

1990

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisenstein, IEEE Photon. Technol. Lett. 2, 711713 (1990).
[CrossRef]

1989

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Ahmad, F. R.

F. R. Ahmad and F. Rana, IEEE Photon. Technol. Lett. 20, 190 (2008).
[CrossRef]

Alphonse, G.

S. Gee, G. Alphonse, J. Connolly, and P. J. Delfyett, IEEE J. Quantum Electron. 4, 209 (1998).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Chang, Y. H.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE J. Quantum Electron. 30, 1122 (1994).
[CrossRef]

Chann, B.

Connolly, J.

S. Gee, G. Alphonse, J. Connolly, and P. J. Delfyett, IEEE J. Quantum Electron. 4, 209 (1998).
[CrossRef]

Delfyett, P. J.

S. Gee, G. Alphonse, J. Connolly, and P. J. Delfyett, IEEE J. Quantum Electron. 4, 209 (1998).
[CrossRef]

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE J. Quantum Electron. 30, 1122 (1994).
[CrossRef]

Dienes, A.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE J. Quantum Electron. 30, 1122 (1994).
[CrossRef]

Eisenstein, G.

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisenstein, IEEE Photon. Technol. Lett. 2, 711713 (1990).
[CrossRef]

Gee, S.

S. Gee, G. Alphonse, J. Connolly, and P. J. Delfyett, IEEE J. Quantum Electron. 4, 209 (1998).
[CrossRef]

George, P.

F. Rana and P. George, IEEE J. Quantum Electron. 43, 1109 (2007).
[CrossRef]

Goldberg, L.

L. Goldberg, D. Mehuys, and D. Welch, IEEE Photon. Technol. Lett. 6, 1070 (1994).
[CrossRef]

Gopinath, J. T.

Hall, K. L.

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisenstein, IEEE Photon. Technol. Lett. 2, 711713 (1990).
[CrossRef]

Heritage, J. P.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE J. Quantum Electron. 30, 1122 (1994).
[CrossRef]

Hong, M. Y.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE J. Quantum Electron. 30, 1122 (1994).
[CrossRef]

Huang, R. K.

Ippen, E. P.

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisenstein, IEEE Photon. Technol. Lett. 2, 711713 (1990).
[CrossRef]

Juodawlkis, P. W.

Lai, Y.

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisenstein, IEEE Photon. Technol. Lett. 2, 711713 (1990).
[CrossRef]

Mehuys, D.

L. Goldberg, D. Mehuys, and D. Welch, IEEE Photon. Technol. Lett. 6, 1070 (1994).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Plant, J. J.

Rana, F.

F. R. Ahmad and F. Rana, IEEE Photon. Technol. Lett. 20, 190 (2008).
[CrossRef]

F. Rana and P. George, IEEE J. Quantum Electron. 43, 1109 (2007).
[CrossRef]

Ripin, D. J.

Welch, D.

L. Goldberg, D. Mehuys, and D. Welch, IEEE Photon. Technol. Lett. 6, 1070 (1994).
[CrossRef]

IEEE J. Quantum Electron.

M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE J. Quantum Electron. 30, 1122 (1994).
[CrossRef]

F. Rana and P. George, IEEE J. Quantum Electron. 43, 1109 (2007).
[CrossRef]

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

S. Gee, G. Alphonse, J. Connolly, and P. J. Delfyett, IEEE J. Quantum Electron. 4, 209 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

F. R. Ahmad and F. Rana, IEEE Photon. Technol. Lett. 20, 190 (2008).
[CrossRef]

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisenstein, IEEE Photon. Technol. Lett. 2, 711713 (1990).
[CrossRef]

L. Goldberg, D. Mehuys, and D. Welch, IEEE Photon. Technol. Lett. 6, 1070 (1994).
[CrossRef]

Opt. Lett.

Other

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

E out versus E in curves without TPA (dashed curve) and with TPA assuming FWHM pulse widths of 10 ps (solid curve) and 1 ps (dashed–dotted curve). The SOA parameters are given in the text and correspond to the InGaAsP SOA in [3]. E sat = 100 pJ . In each case, the three curves correspond to unsaturated material gain values ( g o ) of 800, 1200, and 1600 cm 1 .

Fig. 2
Fig. 2

SOA gain without TPA (dashed curves) and with TPA assuming FWHM pulse widths of 10 ps (solid curves) and 1 ps (dotted–dashed curves). The SOA parameters are given in the text and correspond to the InGaAsP SOA in [3]. E sat = 100 pJ . In each case, the three curves correspond to unsaturated material gain values ( g o ) of 800, 1200, and 1600 cm 1 .

Fig. 3
Fig. 3

Values of E TPA are plotted as a function of the FWHM pulse width τ. The SOA parameters are the same as in Figs. 1, 2. The four curves correspond to unsaturated material gain values ( g o ) of 400, 800, 1200, and 1600 cm 1 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z = j β 2 2 2 A ( z , t ) t 2 + Γ 2 g ( z , t ) ( 1 j α ) A ( z , t ) l 2 A ( z , t ) + ( j k o n 2 β 2 ) A mode A ( z , t ) 2 A ( z , t ) .
d E ( z ) d z = Γ g o E sat [ 1 exp ( E ( z ) E sat ) ] l E ( z ) γ ( z ) E 2 ( z ) .
γ ( z ) = β A mode A ( z , t ) 4 d t ( A ( z , t ) 2 d t ) 2 .
E TPA = Γ g o e γ Γ g o 1.5 τ A mode e β .

Metrics