Abstract

We present minimalistic and cost-efficient instrumentation employing tunable diode laser gas spectroscopy for the characterization of porous and highly scattering solids. The sensitivity reaches 3×106 (absorption fraction), and the improvement with respect to previous work in this field is a factor of 10. We also provide the first characterization of the interference phenomenon encountered in high-resolution spectroscopy of turbid samples. Revealing that severe optical interference originates from the samples, we discuss important implications for system design. In addition, we introduce tracking coils and sample rotation as new and efficient tools for interference suppression. The great value of the approach is illustrated in an application addressing structural properties of pharmaceutical materials.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. Linnerud, P. Kaspersen, and T. Jæger, Appl. Phys. B 67, 297 (1998).
    [CrossRef]
  2. P. A. Martin, Chem. Soc. Rev. 31, 201 (2002).
    [CrossRef] [PubMed]
  3. P. Kluczynski, J. Gustafsson, Å. Lindberg, and O. Axner, Spectrochim. Acta, Part B 56, 1277 (2001).
    [CrossRef]
  4. J. A. Silver, Appl. Opt. 31, 707 (1992).
    [CrossRef] [PubMed]
  5. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, Opt. Lett. 26, 16 (2001).
    [CrossRef]
  6. G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, and S. Svanberg, Appl. Opt. 41, 3538 (2002).
    [CrossRef] [PubMed]
  7. M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, Opt. Express 14, 3641 (2006).
    [CrossRef] [PubMed]
  8. L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, Opt. Lasers Eng. 44, 687 (2006).
    [CrossRef]
  9. L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, and S. Svanberg, J. Biomed. Opt. 12, 054001 (2007).
    [CrossRef] [PubMed]
  10. T. Svensson, L. Persson, M. Andersson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, Appl. Spectrosc. 61, 784 (2007).
    [CrossRef] [PubMed]
  11. T. Fernholz, H. Teichert, and V. Ebert, Appl. Phys. B 75, 229 (2002).
    [CrossRef]
  12. R. Arndt, J. Appl. Phys. 36, 2522 (1965).
    [CrossRef]
  13. M. Firbank and D. T. Delpy, Phys. Med. Biol. 38, 847 (1993).
    [CrossRef]
  14. P. Werle, R. Miicke, and F. Slemr, Appl. Phys. B 57, 131 (1993).
    [CrossRef]
  15. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, "VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids," Appl. Phys. B (to be published).

2007 (2)

2006 (2)

M. Andersson, L. Persson, M. Sjöholm, and S. Svanberg, Opt. Express 14, 3641 (2006).
[CrossRef] [PubMed]

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, Opt. Lasers Eng. 44, 687 (2006).
[CrossRef]

2002 (3)

P. A. Martin, Chem. Soc. Rev. 31, 201 (2002).
[CrossRef] [PubMed]

T. Fernholz, H. Teichert, and V. Ebert, Appl. Phys. B 75, 229 (2002).
[CrossRef]

G. Somesfalean, M. Sjöholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, and S. Svanberg, Appl. Opt. 41, 3538 (2002).
[CrossRef] [PubMed]

2001 (2)

M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, Opt. Lett. 26, 16 (2001).
[CrossRef]

P. Kluczynski, J. Gustafsson, Å. Lindberg, and O. Axner, Spectrochim. Acta, Part B 56, 1277 (2001).
[CrossRef]

1998 (1)

I. Linnerud, P. Kaspersen, and T. Jæger, Appl. Phys. B 67, 297 (1998).
[CrossRef]

1993 (2)

M. Firbank and D. T. Delpy, Phys. Med. Biol. 38, 847 (1993).
[CrossRef]

P. Werle, R. Miicke, and F. Slemr, Appl. Phys. B 57, 131 (1993).
[CrossRef]

1992 (1)

1965 (1)

R. Arndt, J. Appl. Phys. 36, 2522 (1965).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

I. Linnerud, P. Kaspersen, and T. Jæger, Appl. Phys. B 67, 297 (1998).
[CrossRef]

T. Fernholz, H. Teichert, and V. Ebert, Appl. Phys. B 75, 229 (2002).
[CrossRef]

P. Werle, R. Miicke, and F. Slemr, Appl. Phys. B 57, 131 (1993).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Soc. Rev. (1)

P. A. Martin, Chem. Soc. Rev. 31, 201 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

R. Arndt, J. Appl. Phys. 36, 2522 (1965).
[CrossRef]

J. Biomed. Opt. (1)

L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, and S. Svanberg, J. Biomed. Opt. 12, 054001 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lasers Eng. (1)

L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, Opt. Lasers Eng. 44, 687 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Med. Biol. (1)

M. Firbank and D. T. Delpy, Phys. Med. Biol. 38, 847 (1993).
[CrossRef]

Spectrochim. Acta, Part B (1)

P. Kluczynski, J. Gustafsson, Å. Lindberg, and O. Axner, Spectrochim. Acta, Part B 56, 1277 (2001).
[CrossRef]

Other (1)

T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, "VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids," Appl. Phys. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the WMS-TDLAS instrumentation, together with sensor and WMS signals (obtained in ambient air measurements).

Fig. 2
Fig. 2

Optical interference encountered in GASMAS is exemplified in (a) ( 75 mm added path). There, we also show the signal measured with sample rotation (a procedure described below). Influence of the laser-sample distance is presented quantitatively in (b). The increase in the oxygen signal as L is increased is shown in (c), using a free-space oxygen response as reference (right side of image).

Fig. 3
Fig. 3

Sensitivity analysis by means of standard addition and sample rotation. Residual standard deviation σ, and average absolute deviations, ε, for linear regression are stated. In epoxy measurements, the obtained signal originates from the ambient air path between laser and sample. Since the same path offset is present in the pharmaceutical data, the oxygen imprint for the tablet is 18 mm L eq .

Fig. 4
Fig. 4

Allan deviation based on 400 consecutive 1 s measurements. Data shown are from measurements on a pharmaceutical tablet under sample rotation ( L eq = 25.8 mm ) , the epoxy sample with tracking coil beam dithering ( L eq = 20.7 mm ) , as well from free-space measurements (no scattering sample present, L eq = 76.5 mm ).

Metrics