Abstract

We report the design and operation of a novel all-fiber bidirectional passively mode-locked ring laser. An erbium-doped fiber was chosen as the active element in a ring cavity arrangement. A short segment of a fiber taper embedded in carbon nanotubes/polymer composite, acting as a saturable absorber, was used to enable bidirectional mode locking. The laser generates two stable femtosecond pulse trains in opposite directions. A beat note of about 2MHz, having a bandwidth of less than 2kHz, is measured when the pulses propagating in opposite directions are (temporally) overlapped at a photodetector. We believe this device will find important applications in precision rotation sensing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. Buholz and M. Chodorow, Quantum Electron. 3, 454 (1967).
    [CrossRef]
  2. R. L. Fork, B. 1. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
    [CrossRef]
  3. F. Salin, P. Grangier, P. Georges, G. Le Saux, and A. Brun, Opt. Lett. 15, 906 (1990).
    [CrossRef] [PubMed]
  4. D. Gnass, N. P. Ernsting, and F. P. Schafer, Appl. Phys. B: Photophys. Laser Chem. 53, 119 (1991).
    [CrossRef]
  5. M. L. Dennis, J.-C. M. Diels, and M. Lai, Opt. Lett. 16, 529 (1991).
    [CrossRef] [PubMed]
  6. M. L. Dennis, J.-C. Diels, and M. Mohebi, Appl. Phys. B: Photophys. Laser Chem. 54, 278 (1992).
    [CrossRef]
  7. W. R. Christian and M. J. Rosker, Opt. Lett. 16, 1587 (1991).
    [CrossRef] [PubMed]
  8. Y. Liu, L. Sun, H. Qiu, Y. Wang, Q. Tian, and X. Ma, Laser Phys. Lett. 4, 187 (2007).
    [CrossRef]
  9. K. Kieu and M. Mansuripur, Opt. Lett. 32, 2242 (2007).
    [CrossRef] [PubMed]

2007

Y. Liu, L. Sun, H. Qiu, Y. Wang, Q. Tian, and X. Ma, Laser Phys. Lett. 4, 187 (2007).
[CrossRef]

K. Kieu and M. Mansuripur, Opt. Lett. 32, 2242 (2007).
[CrossRef] [PubMed]

1992

M. L. Dennis, J.-C. Diels, and M. Mohebi, Appl. Phys. B: Photophys. Laser Chem. 54, 278 (1992).
[CrossRef]

1991

1990

1981

R. L. Fork, B. 1. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

1967

N. Buholz and M. Chodorow, Quantum Electron. 3, 454 (1967).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem.

D. Gnass, N. P. Ernsting, and F. P. Schafer, Appl. Phys. B: Photophys. Laser Chem. 53, 119 (1991).
[CrossRef]

M. L. Dennis, J.-C. Diels, and M. Mohebi, Appl. Phys. B: Photophys. Laser Chem. 54, 278 (1992).
[CrossRef]

Appl. Phys. Lett.

R. L. Fork, B. 1. Green, and C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Laser Phys. Lett.

Y. Liu, L. Sun, H. Qiu, Y. Wang, Q. Tian, and X. Ma, Laser Phys. Lett. 4, 187 (2007).
[CrossRef]

Opt. Lett.

Quantum Electron.

N. Buholz and M. Chodorow, Quantum Electron. 3, 454 (1967).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the bidirectional, passively mode-locked fiber laser.

Fig. 2
Fig. 2

Q-switched (a) and mode-locked (b) pulse trains emerging from the output ports of the bidirectional fiber laser. The mode-locked pulse repetition is about 15 MHz .

Fig. 3
Fig. 3

Optical spectra of the laser output pulse trains on linear and logarithmic scales.

Fig. 4
Fig. 4

Autocorrelation traces obtained for the CW and CCW pulses.

Fig. 5
Fig. 5

(a) Measured beat note between two femtosecond pulse trains of the same repetition rate, emerging from the bidirectional ring fiber laser. (b) Fourier transform of the beat-note signal obtained using an RF spectrum analyzer. The bandwidth around the peak is 2 kHz at 5 s integration time.

Metrics