Abstract

We report a singly resonant optical parametric oscillator (SRO) based on a ZnGeP2 crystal directly pumped by a lamp-pumped Q-switched CrTmHo:YAG laser. The IR was tunable from 4.7 to 7.8μm via crystal angle tuning. A maximum optical to optical efficiency of 56% was obtained from the pump (2.09μm) to total IR at a pump energy of 6.5mJ. The corresponding idler energy was 1.45mJ. The SRO was measured to have a slope efficiency of 64% and a threshold of 1mJ. The spatial beam quality of the idler, characterized by the M2 parameter, was 1.38 when the SRO was pumped at 2.5 times threshold. These results show that ZnGeP2 optical parametric oscillators directly pumped by a CrTmHo:YAG laser can be operated efficiently, while maintaining good IR beam quality.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. A. Mackanos, D. Simanovski, H. A. Schwettman, and E. D. Jansen, Proc. SPIE 5695, 193-200 (2005).
    [CrossRef]
  2. M. A. Mackanos, Ph.D. dissertation (Graduate School of Vanderbilt University, 2004).
  3. P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, Appl. Opt. 38, 563 (1999).
    [CrossRef]
  4. K. L. Vodopyanov and P. G. Schunemann, Opt. Lett. 28, 441 (2003).
    [CrossRef] [PubMed]
  5. P. B. Phua, K. S. Lai, R. F. Wu, and T. C. Chong, Opt. Lett. 23, 1262 (1998).
    [CrossRef]
  6. E. Cheung, S. Palese, H. Injeyan, C. Hoefer, R. Hilyard, H. Komine, J. Gish, and W. Bosenberg, in Proceedings of IEEE Aerospace Conference (IEEE, 2000), Vol. 3, p. 55.
  7. M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, Appl. Phys. B 75, 367 (2002).
    [CrossRef]
  8. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, Appl. Opt. 45, 3839 (2006).
    [CrossRef] [PubMed]
  9. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, J. Opt. Soc. Am. B 17, 723 (2000).
    [CrossRef]
  10. G. Anstett, A. Borsutzky, and R. Wallenstein, Appl. Phys. B 76, 541 (2003).
    [CrossRef]
  11. S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, IEEE J. Quantum Electron. 27, 2142 (1991).
    [CrossRef]
  12. K. H. Kim, Y. S. Choi, N. P. Barnes, R. V. Hess, C. H. Bair, and P. Brockman, Appl. Opt. 32, 2066 (1993).
    [CrossRef] [PubMed]
  13. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, Opt. Express 12, 5125 (2004).
    [CrossRef] [PubMed]
  14. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, J. Opt. Soc. Am. B 18, 1307 (2001).
    [CrossRef]
  15. A. V. Smith, W. J. Alford, T. D. Raymond, and M. S. Bowers, J. Opt. Soc. Am. B 12, 2253 (1995).
    [CrossRef]
  16. R. Urschel, A. Borsutzky, and R. Wallenstein, Appl. Phys. B 70, 203 (2000).
    [CrossRef]

2006 (1)

2005 (1)

M. A. Mackanos, D. Simanovski, H. A. Schwettman, and E. D. Jansen, Proc. SPIE 5695, 193-200 (2005).
[CrossRef]

2004 (1)

2003 (2)

K. L. Vodopyanov and P. G. Schunemann, Opt. Lett. 28, 441 (2003).
[CrossRef] [PubMed]

G. Anstett, A. Borsutzky, and R. Wallenstein, Appl. Phys. B 76, 541 (2003).
[CrossRef]

2002 (1)

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, Appl. Phys. B 75, 367 (2002).
[CrossRef]

2001 (1)

2000 (2)

1999 (1)

1998 (1)

1995 (1)

1993 (1)

1991 (1)

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, IEEE J. Quantum Electron. 27, 2142 (1991).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (3)

G. Anstett, A. Borsutzky, and R. Wallenstein, Appl. Phys. B 76, 541 (2003).
[CrossRef]

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, Appl. Phys. B 75, 367 (2002).
[CrossRef]

R. Urschel, A. Borsutzky, and R. Wallenstein, Appl. Phys. B 70, 203 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, IEEE J. Quantum Electron. 27, 2142 (1991).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

M. A. Mackanos, D. Simanovski, H. A. Schwettman, and E. D. Jansen, Proc. SPIE 5695, 193-200 (2005).
[CrossRef]

Other (2)

M. A. Mackanos, Ph.D. dissertation (Graduate School of Vanderbilt University, 2004).

E. Cheung, S. Palese, H. Injeyan, C. Hoefer, R. Hilyard, H. Komine, J. Gish, and W. Bosenberg, in Proceedings of IEEE Aerospace Conference (IEEE, 2000), Vol. 3, p. 55.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. M1, M2, high reflective curved mirror, and flat output coupler for the Cr Tm Ho : YAG laser; M3 and M4, flat mirrors for the ZnGeP 2 -SRO; M5, dichroic mirror; RTP, Q-switch; A, aperture.

Fig. 2
Fig. 2

Idler energy as a function of pump energy for an idler wavelength of 5.2 μ m . The inset shows the temporal shape of the idler (open circles) and the pump before (line) and after (closed circles) the SRO. The pump energy was 3 mJ .

Fig. 3
Fig. 3

Measured tuning curve for the idler (squares) and signal (circles) and calculated tuning curve from Zelmon et al. [14] (solid curve).

Fig. 4
Fig. 4

Far field beam profiles for (a) the pump and (b) the idler at 5.2 μ m . A single pixel measures 48.5 μ m × 48.5 μ m .

Metrics