Abstract

We report an experimental observation of slow light propagation in cold Rb atoms exhibiting cavity electromagnetically induced transparency (EIT). The steep slope of the atomic dispersion manifested by EIT reduces the light group velocity. The cavity filtering and feedback further contribute to the slowdown and delay of the light pulse propagation. A combination of the cavity and the EIT atomic system significantly improves the performance of the slow light propagation. A propagation time delay of 200ns was observed in the cavity and Rb EIT system, which is 70 times greater than the time delay calculated for the light pulse propagation through the same Rb EIT system without the cavity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1997).
    [CrossRef]
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).
    [CrossRef]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  4. Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, Phys. Rev. Lett. 89, 233001 (2002).
    [CrossRef] [PubMed]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
    [CrossRef] [PubMed]
  6. G. S. Agarwal and T. N. Dey, Phys. Rev. Lett. 92, 203901 (2004).
    [CrossRef] [PubMed]
  7. V. S. C. Rao, S. D. Gupta, and G. S. Agarwal, Opt. Lett. 29, 307 (2004).
    [CrossRef]
  8. Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
    [CrossRef] [PubMed]
  9. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Phys. Rev. Lett. 94, 053902 (2005).
    [CrossRef] [PubMed]
  10. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004).
    [CrossRef] [PubMed]
  11. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  12. J. Khurgin, Opt. Lett. 30, 513 (2005).
    [CrossRef] [PubMed]
  13. H. Su and S. L. Chuang, Opt. Lett. 31, 271 (2006).
    [CrossRef] [PubMed]
  14. M. F. Yanik and S. H. Fan, Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  15. M. F. Yanik and S. H. Fan, Phys. Rev. A 71, 013803 (2005).
    [CrossRef]
  16. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, Opt. Lett. 23, 295 (1998).
    [CrossRef]
  17. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, Opt. Lett. 25, 1732 (2000).
    [CrossRef]
  18. In our experiment, the cavity can stay around the resonance (≥90% of the peak transmission) for at least 10s before it slowly drifts away, which is long enough for recording a sufficient number of the experimental measurements. Furthermore, the cavity dark state is insensitive to the cavity drift [G. Hernandez, J. Zhang, and Y. Zhu, Phys. Rev. A 76, 053814 (2007)].
    [CrossRef]
  19. G. S. Agarwal, Phys. Rev. Lett. 53, 1732 (1984).
    [CrossRef]
  20. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990).
    [CrossRef] [PubMed]
  21. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]

2007

In our experiment, the cavity can stay around the resonance (≥90% of the peak transmission) for at least 10s before it slowly drifts away, which is long enough for recording a sufficient number of the experimental measurements. Furthermore, the cavity dark state is insensitive to the cavity drift [G. Hernandez, J. Zhang, and Y. Zhu, Phys. Rev. A 76, 053814 (2007)].
[CrossRef]

2006

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

H. Su and S. L. Chuang, Opt. Lett. 31, 271 (2006).
[CrossRef] [PubMed]

2005

J. Khurgin, Opt. Lett. 30, 513 (2005).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Phys. Rev. Lett. 94, 053902 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. F. Yanik and S. H. Fan, Phys. Rev. A 71, 013803 (2005).
[CrossRef]

2004

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

2002

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

2000

1999

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

1998

1997

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1997).
[CrossRef]

1990

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

1984

G. S. Agarwal, Phys. Rev. Lett. 53, 1732 (1984).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. F. Yanik and S. H. Fan, Phys. Rev. A 71, 013803 (2005).
[CrossRef]

In our experiment, the cavity can stay around the resonance (≥90% of the peak transmission) for at least 10s before it slowly drifts away, which is long enough for recording a sufficient number of the experimental measurements. Furthermore, the cavity dark state is insensitive to the cavity drift [G. Hernandez, J. Zhang, and Y. Zhu, Phys. Rev. A 76, 053814 (2007)].
[CrossRef]

Phys. Rev. Lett.

G. S. Agarwal, Phys. Rev. Lett. 53, 1732 (1984).
[CrossRef]

Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, Phys. Rev. Lett. 89, 233001 (2002).
[CrossRef] [PubMed]

G. S. Agarwal and T. N. Dey, Phys. Rev. Lett. 92, 203901 (2004).
[CrossRef] [PubMed]

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Phys. Rev. Lett. 94, 053902 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

M. F. Yanik and S. H. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Three-level Rb 85 atoms interacting with a coupling field and a cavity field, which forms a Λ-type system. (b) Experimental setup. M, mirror; DL, extended-cavity diode laser; λ 2 , half-wave plate; AOM, acousto-optic modulator; D, photodetector.

Fig. 2
Fig. 2

Cavity transmission versus the probe detuning Δ p . The experimental parameters are Δ c 0 and Ω 10 MHz , (a) Δ 13 MHz , (b) Δ 0 , and (c) Δ 11 MHz . The other parameters used in the calculations are n σ ea l = 2.5 , R = 0.98 , and the ground state decoherence rate γ = 0.025 Γ .

Fig. 3
Fig. 3

Measured probe pulse transmission versus time. (a) Experimental data. The inset figure of (a) shows the light pulses scaled with the same amplitude. (b) Theoretical calculation. The experimental parameters and the parameters used in the calculations are the same as that of Fig. 2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E i ( t ) = E 0 exp ( t 2 a 2 )
E i ( 2 π υ ) = a E 0 exp ( a 2 ( 2 π υ 2 π υ p ) 2 4 ) 2 .
E T ( 2 π υ ) = ( 1 R ) exp ( i k ( L l + χ l + i χ l ) ) E i ( 2 π ν ) 1 R exp ( 2 i k ( L l + χ l + i χ l ) ) .
E T ( t ) = 2 π E T ( 2 π υ ) exp ( i 2 π υ t ) d υ .

Metrics