Abstract

A high-aspect-ratio (30) SU-8 micro-/nanotip array whose shape is defined by diffraction was fabricated by a single UV photolithography procedure and its exposed dose control. The fabrication result of the tip agrees well with the Rayleigh–Sommerfeld solution of the Huygens–Fresnel principle at wide observation distances. In a near field below distance 2μm (only several times of wavelength), necking points also agree with the solution, although it is assumed that the distance is much larger than wavelength. It can be also applied to control the shape of the tip and to determine the critical dose Dc of SU-8 and other photocurable polymers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. D. Campo and C. Greiner, J. Micromech. Microeng. 17, R81 (2007).
    [CrossRef]
  2. M. Han, W. Lee, S.-K. Lee, and S. S. Lee, Sens. Actuators, A 111, 14 (2004).
    [CrossRef]
  3. S. W. Lee, D. S. Kim, S. S. Lee, and T. H. Kwon, J. Micromech. Microeng. 16, 1067 (2006).
    [CrossRef]
  4. B.-Y. Shew, H.-C. Li, C.-L. Pan, and C.-H. Ko, J. Phys. D 38, 1097 (2005).
    [CrossRef]
  5. G. Genolet, M. Despont, P. Vettiger, U. Staufer, W. Noell, N. F. DeRooij, T. Cueni, M.-P. Bernal, and F. Marquis-Weible, Rev. Sci. Instrum. 72, 3877 (2001).
    [CrossRef]
  6. J.-H. Park, M. G. Allen, and M. R. Prausnitz, J. Controlled Release 104, 51 (2005).
    [CrossRef]
  7. K. Kim, D. S. Park, H. M. Lu, W. Che, K. Kim, J.-B. Lee, and C. H. Ahn, J. Micromech. Microeng. 14, 579 (2004).
  8. H. Huang, W. Yang, T. Wang, T. Chuang, and C. Fu, J. Micromech. Microeng. 17, 291 (2007).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  10. M. J. Madou, Fundamentals of Microfabrication, 2nd ed., (CRC Press, 2002).
  11. M. Gaudet, J.-C. Camart, L. Buchaillot, and S. Arscott, Appl. Phys. Lett. 88, 024107 (2006).
    [CrossRef]
  12. E. Hecht, Optics, 4th ed., (Addison-Wesley, 2002).

2007 (2)

A. D. Campo and C. Greiner, J. Micromech. Microeng. 17, R81 (2007).
[CrossRef]

H. Huang, W. Yang, T. Wang, T. Chuang, and C. Fu, J. Micromech. Microeng. 17, 291 (2007).
[CrossRef]

2006 (2)

M. Gaudet, J.-C. Camart, L. Buchaillot, and S. Arscott, Appl. Phys. Lett. 88, 024107 (2006).
[CrossRef]

S. W. Lee, D. S. Kim, S. S. Lee, and T. H. Kwon, J. Micromech. Microeng. 16, 1067 (2006).
[CrossRef]

2005 (2)

B.-Y. Shew, H.-C. Li, C.-L. Pan, and C.-H. Ko, J. Phys. D 38, 1097 (2005).
[CrossRef]

J.-H. Park, M. G. Allen, and M. R. Prausnitz, J. Controlled Release 104, 51 (2005).
[CrossRef]

2004 (2)

K. Kim, D. S. Park, H. M. Lu, W. Che, K. Kim, J.-B. Lee, and C. H. Ahn, J. Micromech. Microeng. 14, 579 (2004).

M. Han, W. Lee, S.-K. Lee, and S. S. Lee, Sens. Actuators, A 111, 14 (2004).
[CrossRef]

2001 (1)

G. Genolet, M. Despont, P. Vettiger, U. Staufer, W. Noell, N. F. DeRooij, T. Cueni, M.-P. Bernal, and F. Marquis-Weible, Rev. Sci. Instrum. 72, 3877 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

M. Gaudet, J.-C. Camart, L. Buchaillot, and S. Arscott, Appl. Phys. Lett. 88, 024107 (2006).
[CrossRef]

J. Controlled Release (1)

J.-H. Park, M. G. Allen, and M. R. Prausnitz, J. Controlled Release 104, 51 (2005).
[CrossRef]

J. Micromech. Microeng. (4)

K. Kim, D. S. Park, H. M. Lu, W. Che, K. Kim, J.-B. Lee, and C. H. Ahn, J. Micromech. Microeng. 14, 579 (2004).

H. Huang, W. Yang, T. Wang, T. Chuang, and C. Fu, J. Micromech. Microeng. 17, 291 (2007).
[CrossRef]

A. D. Campo and C. Greiner, J. Micromech. Microeng. 17, R81 (2007).
[CrossRef]

S. W. Lee, D. S. Kim, S. S. Lee, and T. H. Kwon, J. Micromech. Microeng. 16, 1067 (2006).
[CrossRef]

J. Phys. D (1)

B.-Y. Shew, H.-C. Li, C.-L. Pan, and C.-H. Ko, J. Phys. D 38, 1097 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Genolet, M. Despont, P. Vettiger, U. Staufer, W. Noell, N. F. DeRooij, T. Cueni, M.-P. Bernal, and F. Marquis-Weible, Rev. Sci. Instrum. 72, 3877 (2001).
[CrossRef]

Sens. Actuators, A (1)

M. Han, W. Lee, S.-K. Lee, and S. S. Lee, Sens. Actuators, A 111, 14 (2004).
[CrossRef]

Other (3)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

M. J. Madou, Fundamentals of Microfabrication, 2nd ed., (CRC Press, 2002).

E. Hecht, Optics, 4th ed., (Addison-Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a)–(c) Schematic view of the fabrication process. (d), (e) SEM images of SU-8 tip array at φ = 6.2 and φ = 3.0 μ m and D 0 = 54.6 mJ cm 2 .

Fig. 2
Fig. 2

(a) Schematic view of diffraction analysis. (b) Distribution of normalized exposed dose ( D D 0 ) in SU-8 medium at φ = 6.4 μ m and D 0 = 1 mJ cm 2 . (c) Exposed dose profile for central axis of circular aperture for z. (d)–(f) Exposed dose profile at different depths, z.

Fig. 3
Fig. 3

Comparison of the shape between the fabricated tip and solved contour line (blue online) at φ = 1.0 μ m and various exposed doses D 0 .

Fig. 4
Fig. 4

Comparison of the character of shape between monochromatic light and polychromatic light (g, h, and i-lines).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U ( P 0 ) = 1 j λ Σ U ( P 1 ) exp ( j k r 01 ) r 01 cos θ d s ,
I ( P 0 ) = c ϵ 2 U ( P 0 ) 2 ,
D ( P 0 , t Exp ) = ( 1 R 1 ) I ( P 0 ) t Exp ( e α U n exp z e α Exp z ) α Exp α U n exp ,

Metrics