Abstract

Two Michelson interferometric fiber-optic hydrophones that use panda polarization-maintaining fibers and devices have been constructed and tested. The low-frequency acoustic sensitivities of both hydrophones are 159dB re 1radμPa. One of the hydrophones tested has a small cylindrical Helmholtz resonator that has a break point near 1200Hz and a measured roll-off of approximately 50dBoctave, and it is a hydrostatic-pressure-insensitive design. This hydrophone is a prototype device for a class of sensors that can be used to eliminate aliasing in future sonar systems. To our knowledge, this is the first time that such a fiber-optic hydrophone has been reported.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. H. Cole, R. L. Johnson, and P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
    [CrossRef]
  2. J. A. Bucaro and H. D. Dardy, J. Acoust. Soc. Am. 62, 1302 (1977).
    [CrossRef]
  3. P. Nash, IEE Proc. F Radar Sonar Navig. 143, 204 (1996).
    [CrossRef]
  4. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE Trans. Microwave Theory Tech. MTT-30, 472 (1982).
    [CrossRef]
  5. G. A. Cranch, P. J. Nash, and C. K. Kirkendall, IEEE Sens. J. 3, 19 (2003).
    [CrossRef]
  6. J. B. Carroll and D. R. Huber, J. Lightwave Technol. LT-4, 83 (1986).
    [CrossRef]
  7. J. L. Flanagan, Bell Syst. Tech. J. 58, 903 (1979).
  8. W. Zefeng, L. Hong, X. Shuidong, N. Ming, and H. Yongming, Acta Opt. Sin. 27, 654 (2007).
  9. Z. Meng, G. Stewart, and G. Whitenett, J. Lightwave Technol. 24, 2179 (2006).
    [CrossRef]
  10. R. L. Panton and J. M. Miller, J. Acoust. Soc. Am. 57, 1533 (1975).
    [CrossRef]

2007 (1)

W. Zefeng, L. Hong, X. Shuidong, N. Ming, and H. Yongming, Acta Opt. Sin. 27, 654 (2007).

2006 (1)

2003 (1)

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, IEEE Sens. J. 3, 19 (2003).
[CrossRef]

1996 (1)

P. Nash, IEE Proc. F Radar Sonar Navig. 143, 204 (1996).
[CrossRef]

1986 (1)

J. B. Carroll and D. R. Huber, J. Lightwave Technol. LT-4, 83 (1986).
[CrossRef]

1982 (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE Trans. Microwave Theory Tech. MTT-30, 472 (1982).
[CrossRef]

1979 (1)

J. L. Flanagan, Bell Syst. Tech. J. 58, 903 (1979).

1977 (2)

J. H. Cole, R. L. Johnson, and P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

J. A. Bucaro and H. D. Dardy, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

1975 (1)

R. L. Panton and J. M. Miller, J. Acoust. Soc. Am. 57, 1533 (1975).
[CrossRef]

Acta Opt. Sin. (1)

W. Zefeng, L. Hong, X. Shuidong, N. Ming, and H. Yongming, Acta Opt. Sin. 27, 654 (2007).

Bell Syst. Tech. J. (1)

J. L. Flanagan, Bell Syst. Tech. J. 58, 903 (1979).

IEE Proc. F Radar Sonar Navig. (1)

P. Nash, IEE Proc. F Radar Sonar Navig. 143, 204 (1996).
[CrossRef]

IEEE Sens. J. (1)

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, IEEE Sens. J. 3, 19 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE Trans. Microwave Theory Tech. MTT-30, 472 (1982).
[CrossRef]

J. Acoust. Soc. Am. (3)

J. H. Cole, R. L. Johnson, and P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

J. A. Bucaro and H. D. Dardy, J. Acoust. Soc. Am. 62, 1302 (1977).
[CrossRef]

R. L. Panton and J. M. Miller, J. Acoust. Soc. Am. 57, 1533 (1975).
[CrossRef]

J. Lightwave Technol. (2)

J. B. Carroll and D. R. Huber, J. Lightwave Technol. LT-4, 83 (1986).
[CrossRef]

Z. Meng, G. Stewart, and G. Whitenett, J. Lightwave Technol. 24, 2179 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fiber-optic hydrophone with a metal cylindrical Helmholtz resonator: (a) schematic diagram, (b) photograph.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup.

Fig. 3
Fig. 3

Measured acoustic sensitivity frequency response of the fiber-optic hydrophones with [ R 2 ( f ) ] and without [ R 1 ( f ) ] a cylindrical Helmholtz resonator.

Fig. 4
Fig. 4

Measured transfer function of the cylindrical Helmholtz resonator.

Fig. 5
Fig. 5

Acoustic equivalent circuit of the fiber-optic hydrophone with a cylindrical Helmholtz resonator: (a) direct model, (b) equivalent simple model. R and M, equivalent acoustic resistance and acoustic mass of the orifices, respectively; C 1 , equivalent acoustic compliance of the cavity; C 2 , equivalent acoustic compliance of the cylinder and the sensing mandrel; C, half of the total equivalent acoustic compliance; p, acoustic pressure.

Fig. 6
Fig. 6

Acoustic sensitivity as a function of hydrostatic pressure at frequencies of 200 (circles), 1200 (squares), and 3000 Hz (dots).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R 1 ( f ) = T ( f ) H ( f ) ,
R 2 ( f ) = T ( f ) H ( f ) F ( f ) ,
F ( f ) = R 2 ( f ) R 1 ( f ) .
f = 1 2 π [ 1 M C ] 1 2 = 1 2 π [ 2 M ( C 1 + C 2 ) ] 1 2 ,

Metrics