Abstract

We demonstrate a new approach, i.e., a cw dual-frequency Brillouin fiber laser pumped by two independent single-frequency Er-doped fiber lasers, for the generation of tunable low-noise rf/microwave optical signals. Its inherent features of both linewidth narrowing effect in a Brillouin fiber cavity and common mode noise cancellation between two laser modes sharing a common cavity allow us to achieve high frequency stability without using a supercavity. Beat frequency of the dual-frequency Brillouin fiber laser can be tuned from tens of megahertz up to 100GHz by thermally tuning the wavelengths of the two pump lasers with tuning sensitivity of 1.4GHz°C. Allan variance measurements show the beat signals have the hertz-level frequency stability.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Ye, J. Peng, R. J. Jones, K. W. Holman, J. L. Hall, D. J. Jones, S. A. Diddams, J. Kitching, S. Bize, J. C. Bergquit, L. W. Hollberg, L. Robertsson, and L. Ma, J. Opt. Soc. Am. B 20, 1459 (2003).
    [CrossRef]
  2. K. Kuboki and M. Ohtsu, IEEE J. Quantum Electron. QE-23, 388 (1987).
    [CrossRef]
  3. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
    [CrossRef]
  4. T. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
    [CrossRef]
  5. A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, Opt. Lett. 17, 1204 (1992).
    [CrossRef] [PubMed]
  6. M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
    [CrossRef]
  7. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
    [CrossRef]
  8. J. Geng and S. Jiang, Opt. Lett. 32, 11 (2007).
    [CrossRef]
  9. M. L. Dennis, R. M. Sova, and T. R. Clark, in Proceedings of the 2007 Optical Fiber Communication Conference (Optical Society of America, 2007), paper OWJ6.
  10. K. Y. Song, M. G. Herraez, and L. Thevenaz, Opt. Express 13, 82 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

2005 (1)

2003 (1)

1996 (1)

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

1992 (2)

T. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[CrossRef]

A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, Opt. Lett. 17, 1204 (1992).
[CrossRef] [PubMed]

1989 (1)

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

1987 (1)

K. Kuboki and M. Ohtsu, IEEE J. Quantum Electron. QE-23, 388 (1987).
[CrossRef]

Electron. Lett. (2)

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, Electron. Lett. 25, 1242 (1989).
[CrossRef]

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, Electron. Lett. 32, 1589 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Day, E. K. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[CrossRef]

K. Kuboki and M. Ohtsu, IEEE J. Quantum Electron. QE-23, 388 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, IEEE Photon. Technol. Lett. 18, 1813 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Other (1)

M. L. Dennis, R. M. Sova, and T. R. Clark, in Proceedings of the 2007 Optical Fiber Communication Conference (Optical Society of America, 2007), paper OWJ6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the generation of low-noise rf/microwave optical signal. S, feedback servo; C, fiber coupler; PD, photodiode.

Fig. 2
Fig. 2

Typical rf beat-note spectrum. The rf frequency was measured at 999.942 MHz , corresponding to n = 101 .

Fig. 3
Fig. 3

Measured effective FSR and beat frequency as a function of mode order difference.

Fig. 4
Fig. 4

Root Allan variance of the rf beat signals (at 148.5 MHz ) generated from the Brillouin laser (solid circles), the two Er-doped pump lasers in free-running (cross points), and frequency-locking mode (triangles).

Metrics