Abstract

An imaging system composed of an array of adaptive optics subapertures referred to as a conformal imaging system is considered. A conformal image of an object viewed through atmospheric turbulence is obtained using the following sequential steps: adaptive compensation of phase distortions through optimization of image quality metrics at each subaperture, measurements of the phase and intensity distributions corresponding to the compensated subaperture images, digital combining and processing of the obtained data, computation of a conformal image using arbitrary phase shifts between subapertures, and correction of these phase shifts through conformal image quality optimization using the stochastic parallel gradient descent algorithm. Numerical simulation results of a dual-star conformal image through atmospheric turbulence are presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  2. A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, J. Opt. Soc. Am. A 67, 298 (1977).
    [CrossRef]
  3. M. A. Vorontsov and V. P. Sivokon, J. Opt. Soc. Am. A 15, 2745 (1998).
    [CrossRef]
  4. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  5. D. L. Fried, J. Opt. Soc. Am. A 72, 52 (1982).
    [CrossRef]

1998 (1)

1982 (1)

D. L. Fried, J. Opt. Soc. Am. A 72, 52 (1982).
[CrossRef]

1977 (1)

A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, J. Opt. Soc. Am. A 67, 298 (1977).
[CrossRef]

J. Opt. Soc. Am. A (3)

A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, J. Opt. Soc. Am. A 67, 298 (1977).
[CrossRef]

M. A. Vorontsov and V. P. Sivokon, J. Opt. Soc. Am. A 15, 2745 (1998).
[CrossRef]

D. L. Fried, J. Opt. Soc. Am. A 72, 52 (1982).
[CrossRef]

Other (2)

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a conformal imaging system with adaptive phase distortion compensation and complex-field sensing at each subaperture.

Fig. 2
Fig. 2

Images of a dual-star object obtained with a single subaperture in the presence of atmospheric turbulence with D r 0 = 15 : (a) without AO compensation, (b) after AO compensation. Image (c) corresponds to the diffraction-limited image for a single subaperture.

Fig. 3
Fig. 3

Atmospheric averaged images of a dual star for turbulence strength D r 0 = 15 obtained with the conformal system at different steps of the image synthesis.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u j ( r , t ) = l = 1 N AO v j , l ( t ) S l ( r ) ,
J j [ v j ] = [ I j img ( r i , t ) ] 2 d r i I j img ( r i , t ) d r i ,
v j ( n + 1 ) = v j ( n ) + γ j ( n ) δ J j ( n ) δ v j ( n ) ,
A ¯ ( r , t ) = j = 1 N sub A ¯ j ( r , t ) exp ( i Δ ¯ j ) ,
I c ( r c , t ) = 1 λ Z + A ¯ ( r , t ) exp [ i k 2 ( r 2 F r c r 2 Z ) ] d r 2 ,
J c ( Δ ¯ 1 , , Δ ¯ N sub ) = [ I c ( r c , t ) ] 2 d r c I c ( r c , t ) d r c .
Δ ¯ j ( n + 1 ) = Δ ¯ j ( n ) + μ ( n ) δ J c ( n ) δ Δ ¯ j ( n ) , j = 1 , , N sub ,

Metrics