Abstract

Heterodyne optical feedback on a solid-state laser is experimentally investigated as an efficient tool to characterize coherently near-field evanescent waves. A well-known topography of evanescent field is obtained via a total internal reflection of the light beam emitted by a class B Yb:Er glass laser. A subwavelength size optical fiber tip is scanned to locally probe the resulting evanescent wave in the near field. After a frequency shifting using a pair of acousto-optic modulators, the collected light is optically reinjected to excite the relaxation oscillations of the laser. The resulting dynamical response simultaneously allows very sensitive measurements of the amplitude and the phase of the evanescent wave. Extension of these preliminary results to near-field optical microscopy is suggested and discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
    [CrossRef]
  2. D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
    [CrossRef]
  3. A. Nesci, R. Dändliker, and H. P. Herzig, Opt. Lett. 26, 208 (2001).
    [CrossRef]
  4. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, Phys. Rev. Lett. 85, 294 (2000).
    [CrossRef] [PubMed]
  5. E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
    [CrossRef]
  6. E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 438151 (2001).
    [CrossRef]
  7. L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, Appl. Opt. 45, 4084 (2006).
    [CrossRef] [PubMed]
  8. L. Kervevan, H. Gilles, S. Girard, M. Laroche, and P. Leprince, Appl. Phys. B 86, 169 (2007).
    [CrossRef]
  9. K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
    [CrossRef]
  10. S. Girard, H. Gilles, and M. Laroche, patent FR 0706185 (September 4, 2007).

2007 (1)

L. Kervevan, H. Gilles, S. Girard, M. Laroche, and P. Leprince, Appl. Phys. B 86, 169 (2007).
[CrossRef]

2006 (1)

2001 (2)

E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 438151 (2001).
[CrossRef]

A. Nesci, R. Dändliker, and H. P. Herzig, Opt. Lett. 26, 208 (2001).
[CrossRef]

2000 (1)

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, Phys. Rev. Lett. 85, 294 (2000).
[CrossRef] [PubMed]

1999 (1)

1995 (1)

K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

1989 (2)

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Kervevan, H. Gilles, S. Girard, M. Laroche, and P. Leprince, Appl. Phys. B 86, 169 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

K. Karrai and R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).
[CrossRef]

Opt. Commun. (1)

D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Commun. 71, 23 (1989).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

E. Lacot, R. Day, and F. Stoeckel, Phys. Rev. A 64, 438151 (2001).
[CrossRef]

Phys. Rev. B (1)

R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Rev. B 39, 767 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, Phys. Rev. Lett. 85, 294 (2000).
[CrossRef] [PubMed]

Other (1)

S. Girard, H. Gilles, and M. Laroche, patent FR 0706185 (September 4, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for photon tunneling near-field measurement based on heterodyne optical feedback interferometry.

Fig. 2
Fig. 2

Topography of the evanescent wave created along the silica prism by total internal reflection and scanning of the fiber microtip.

Fig. 3
Fig. 3

Measured amplitude of the evanescent wave versus the distance between the interface and the microtip for different incident angle ( i 1 = 44 ° , 45 ° , and 46.3 ° ).

Fig. 4
Fig. 4

Polar plot showing the simultaneous evolution of amplitude and phase of the detected evanescent wave during a piezoelectric scan of the microprobe (incident angle i 1 = 44 ° ).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ̃ ext ( x , z , t ) = E 0 exp ( z δ ) exp j ( ω t k x x ) = E 0 R ( z ) exp j ( ω t Φ ( x ) ) ,
δ = λ 2 π n 1 2 sin 2 i 1 1 .
d N ( t ) d t = ( W p γ sp ) N T ( W p + γ sp ) × N ( t ) 2 B E ( t ) 2 × N ( t ) ,
d E ( t ) e j ω t d t = ( j ω + 1 2 ( B N ( t ) γ c ) ) E ( t ) e j ω t + γ ext E ( t τ ) × exp [ u δ cos i 1 ] exp [ j ( ( ω + Ω m ) t 2 π n 1 sin i 1 λ u sin i 1 + φ 0 ) ] ,
Δ P ( t ) P s = 2 γ ext exp [ u δ cos i 1 ] γ E ( Ω m ) cos ( Ω m t 2 π n 1 sin i 1 λ u sin i 1 + φ 0 bis ) ,
γ E ( Ω m ) = α 2 + Ω m 2 ( Ω m 2 Ω R 2 ) 2 + α 2 Ω m 2 .

Metrics