Abstract

We study the steady-state and time-resolved luminescent properties of CdTe nanocrystals by one- and two-photon excitation with a femtosecond laser. We observe that 1208nm excitation causes a shift of the emission peak of about 20nm to the infrared compared with 400nm laser excitation. It is found that upconversion luminescence is composed of a photoinduced trapping and a band edge excitonic state and produces the observation of biexponential decay kinetics. We conclude that the redshift of the emission peak is caused by the relative change in luminescence intensity between excitonic and trapping states.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmüller, J. Phys. Chem. B 103, 10109 (1999).
    [CrossRef]
  2. M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
    [CrossRef]
  3. W. Chen, A. G. Joly, and J. Z. Zhang, Phys. Rev. B 64, 041202 (2001).
    [CrossRef]
  4. D. V. Talapin, A. L. Rogach, and K. Hoppe, J. Phys. Chem. B 106, 7177 (2002).
    [CrossRef]
  5. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
    [CrossRef]
  6. W. G. Chen and M. S. Braiman, Photochem. Photobiol. 54, 905 (1991).
    [CrossRef]
  7. A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett. 83, 1423 (2003).
    [CrossRef]
  8. B. Ullrich, R. Schroeder, W. Graupner, and H. Saka, Opt. Express 9, 116 (2001).
    [CrossRef] [PubMed]
  9. E. Poles, D. C. Selmarten, O. I. Micic, and A. J. Nozik, Appl. Phys. Lett. 75, 971 (1999).
    [CrossRef]

2003 (2)

W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
[CrossRef]

A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett. 83, 1423 (2003).
[CrossRef]

2002 (1)

D. V. Talapin, A. L. Rogach, and K. Hoppe, J. Phys. Chem. B 106, 7177 (2002).
[CrossRef]

2001 (2)

1999 (2)

E. Poles, D. C. Selmarten, O. I. Micic, and A. J. Nozik, Appl. Phys. Lett. 75, 971 (1999).
[CrossRef]

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmüller, J. Phys. Chem. B 103, 10109 (1999).
[CrossRef]

1998 (1)

M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
[CrossRef]

1991 (1)

W. G. Chen and M. S. Braiman, Photochem. Photobiol. 54, 905 (1991).
[CrossRef]

Braiman, M. S.

W. G. Chen and M. S. Braiman, Photochem. Photobiol. 54, 905 (1991).
[CrossRef]

Chen, W.

W. Chen, A. G. Joly, and J. Z. Zhang, Phys. Rev. B 64, 041202 (2001).
[CrossRef]

Chen, W. G.

W. G. Chen and M. S. Braiman, Photochem. Photobiol. 54, 905 (1991).
[CrossRef]

Eychmüller, A.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmüller, J. Phys. Chem. B 103, 10109 (1999).
[CrossRef]

M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
[CrossRef]

Gao, M. Y.

M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
[CrossRef]

Graupner, W.

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
[CrossRef]

Hoppe, K.

D. V. Talapin, A. L. Rogach, and K. Hoppe, J. Phys. Chem. B 106, 7177 (2002).
[CrossRef]

Javier, A.

A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett. 83, 1423 (2003).
[CrossRef]

Jennings, T.

A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett. 83, 1423 (2003).
[CrossRef]

Joly, A. G.

W. Chen, A. G. Joly, and J. Z. Zhang, Phys. Rev. B 64, 041202 (2001).
[CrossRef]

Kapitonov, A. M.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmüller, J. Phys. Chem. B 103, 10109 (1999).
[CrossRef]

Kirstein, S.

M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
[CrossRef]

Kornowski, A.

M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
[CrossRef]

Magana, D.

A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett. 83, 1423 (2003).
[CrossRef]

Micic, O. I.

E. Poles, D. C. Selmarten, O. I. Micic, and A. J. Nozik, Appl. Phys. Lett. 75, 971 (1999).
[CrossRef]

Nozik, A. J.

E. Poles, D. C. Selmarten, O. I. Micic, and A. J. Nozik, Appl. Phys. Lett. 75, 971 (1999).
[CrossRef]

Peng, X.

W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
[CrossRef]

Petrov, S. V. Gaponenko, E. P.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmüller, J. Phys. Chem. B 103, 10109 (1999).
[CrossRef]

Poles, E.

E. Poles, D. C. Selmarten, O. I. Micic, and A. J. Nozik, Appl. Phys. Lett. 75, 971 (1999).
[CrossRef]

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
[CrossRef]

Rogach, A. L.

D. V. Talapin, A. L. Rogach, and K. Hoppe, J. Phys. Chem. B 106, 7177 (2002).
[CrossRef]

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmüller, J. Phys. Chem. B 103, 10109 (1999).
[CrossRef]

Rogach, H. M Wald, A. L.

M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
[CrossRef]

Saka, H.

Schroeder, R.

Selmarten, D. C.

E. Poles, D. C. Selmarten, O. I. Micic, and A. J. Nozik, Appl. Phys. Lett. 75, 971 (1999).
[CrossRef]

Strouse, G. F.

A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett. 83, 1423 (2003).
[CrossRef]

Stupak, A. P.

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmüller, J. Phys. Chem. B 103, 10109 (1999).
[CrossRef]

Talapin, D. V.

D. V. Talapin, A. L. Rogach, and K. Hoppe, J. Phys. Chem. B 106, 7177 (2002).
[CrossRef]

Ullrich, B.

Weller, H.

M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
[CrossRef]

Yu, W. W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
[CrossRef]

Zhang, J. Z.

W. Chen, A. G. Joly, and J. Z. Zhang, Phys. Rev. B 64, 041202 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

A. Javier, D. Magana, T. Jennings, and G. F. Strouse, Appl. Phys. Lett. 83, 1423 (2003).
[CrossRef]

E. Poles, D. C. Selmarten, O. I. Micic, and A. J. Nozik, Appl. Phys. Lett. 75, 971 (1999).
[CrossRef]

Chem. Mater. (1)

W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).
[CrossRef]

J. Phys. Chem. B (3)

A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmüller, J. Phys. Chem. B 103, 10109 (1999).
[CrossRef]

M. Y. Gao, S. Kirstein, H. M Wald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
[CrossRef]

D. V. Talapin, A. L. Rogach, and K. Hoppe, J. Phys. Chem. B 106, 7177 (2002).
[CrossRef]

Opt. Express (1)

Photochem. Photobiol. (1)

W. G. Chen and M. S. Braiman, Photochem. Photobiol. 54, 905 (1991).
[CrossRef]

Phys. Rev. B (1)

W. Chen, A. G. Joly, and J. Z. Zhang, Phys. Rev. B 64, 041202 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

In each part, curve 1 is the temperature absorption spectrum. The other curves are all the luminescence spectra after femtosecond laser excitation at 400 nm (dots), 800 nm (solid curves), and 1208 nm (dashed curves).

Fig. 2
Fig. 2

Dependence of the luminescence intensity in 1# 5.4 nm CdTe NCs on the pump power at different input pulse wavelengths.

Fig. 3
Fig. 3

Luminescence decay kinetics of three CdTe NCs samples. The circles in (a) and (b) are the experimental curves at 800 and 400 nm laser excitation, respectively, and the corresponding solid curves are fitting curves. The curves in (c) are the difference curves of the corresponding luminescence intensity between the fitting curves of (a) and (b).

Fig. 4
Fig. 4

Tentative diagram of energy levels in CdTe NCs that accounts for the UCL spectra. CBM, conduction band minimum; ESSs, electron surface states; HSSs, hole surface states; VBM, valance band maximum. (a) One-photon absorption and instantaneous photoluminescence of CdTe NCs luminescence. (b) Two-photon excitation occur through a virtual intermediate state.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A = i = 2 s i V i t i T ,

Metrics