Abstract

We report what we believe to be the first differential-phase quantum key distribution experiment using a series of quantum entangled photon pairs. We employed two outstanding techniques. As an entangled photon source, we used a 1.5μm band entangled photon pair source based on spontaneous four-wave mixing in a cooled dispersion-shifted fiber. As receivers, photon pairs were actively phase modulated with LiNbO3 phase modulators followed by very stable planar light-wave circuit Mach–Zehnder interferometers, which provided two nonorthogonal measurements. As a consequence, we successfully generated sifted keys with a quantum bit error rate of 8.3% and a key generation rate of 0.3  bits and revealed the feasibility of this QKD scheme.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
    [CrossRef]
  2. K. Inoue, Phys. Rev. A 71, 032301 (2005).
    [CrossRef]
  3. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).
    [CrossRef] [PubMed]
  4. A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 39, 621 (2003).
    [CrossRef]
  5. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, Opt. Express 12, 3737 (2004).
    [CrossRef] [PubMed]
  6. H. Takesue and K. Inoue, Phys. Rev. A 72, 041804(R) (2005).
    [CrossRef]
  7. H. Takesue and K. Inoue, Opt. Express 14, 3453 (2006).
    [CrossRef] [PubMed]
  8. J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
    [CrossRef] [PubMed]
  9. E. Waks, A. Zeevi, and Y. Yamamoto, Phys. Rev. A 65, 052310 (2002).
    [CrossRef]

2006 (1)

2005 (2)

H. Takesue and K. Inoue, Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

K. Inoue, Phys. Rev. A 71, 032301 (2005).
[CrossRef]

2004 (1)

2003 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 39, 621 (2003).
[CrossRef]

2002 (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

E. Waks, A. Zeevi, and Y. Yamamoto, Phys. Rev. A 65, 052310 (2002).
[CrossRef]

2000 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).
[CrossRef] [PubMed]

1989 (1)

J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).
[CrossRef] [PubMed]

Chen, J.

Franson, J. D.

J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).
[CrossRef] [PubMed]

Inoue, K.

H. Takesue and K. Inoue, Opt. Express 14, 3453 (2006).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

K. Inoue, Phys. Rev. A 71, 032301 (2005).
[CrossRef]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 39, 621 (2003).
[CrossRef]

Kumar, P.

Li, X.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Sharping, J.

Takesue, H.

H. Takesue and K. Inoue, Opt. Express 14, 3453 (2006).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).
[CrossRef] [PubMed]

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 39, 621 (2003).
[CrossRef]

Voss, P.

Waks, E.

E. Waks, A. Zeevi, and Y. Yamamoto, Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Yamamoto, Y.

E. Waks, A. Zeevi, and Y. Yamamoto, Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 39, 621 (2003).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).
[CrossRef] [PubMed]

Zeevi, A.

E. Waks, A. Zeevi, and Y. Yamamoto, Phys. Rev. A 65, 052310 (2002).
[CrossRef]

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, Electron. Lett. 39, 621 (2003).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (3)

E. Waks, A. Zeevi, and Y. Yamamoto, Phys. Rev. A 65, 052310 (2002).
[CrossRef]

H. Takesue and K. Inoue, Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

K. Inoue, Phys. Rev. A 71, 032301 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).
[CrossRef] [PubMed]

J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Coincidence rate as a function of the temperature of the PLC Mach–Zehnder interferometer. The solid curve shows the fitted curve with no phase modulation, and the dashed curve shows that with π 2 phase modulation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ = n k k s k i .
ψ f = 1 2 2 { ( e i ( θ a + θ b ) + 1 ) ( A 1 s B 1 i A 2 s B 2 i ) i ( e i ( θ a + θ b ) 1 ) ( A 1 s B 2 i A 2 s B 1 i ) } ,
C s = ( μ c + μ s n ) α s + d s ,
C i = ( μ c + μ i n ) α i + d i ,
C = R m R u m = μ c α s α i c s c i + 1 .
QBER = 1 2 × 4 R u m 2 R m + 4 R u m .
R = f 2 ( 2 R m + 4 R u m ) ,

Metrics