Abstract

We report on a cavity-dumped Yb:YAG thin disk laser with intracavity-frequency doubling to provide pulses in the millijoule energy range at a repetition rate of up to 100kHz. The maximum average output power at 515nm was 102W with pulses of a pulse length of 300ns. An additional advantage of the presented laser setup is the wide tunability of the pulse duration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Honea, C. A. Ebbers, R. J. Beach, J. A. Speth, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, Opt. Lett. 23, 1203 (1998).
    [CrossRef]
  2. S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, Opt. Lett. 25, 105 (2000).
    [CrossRef]
  3. E. C. Honea, R. J. Beach, S. C. Mitchell, and P. V. Avizonis, Opt. Lett. 24, 154 (1999).
    [CrossRef]
  4. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).
  5. International Organization for Standardization, Lasers and Laser-Related Equipment--Test Methods for Laser Beam Parameters--Beam Width, Divergence Angle, and Beam Propagation Factor, ISO No. 11146 (1999).
  6. C. Stolzenburg, M. Larionov, A. Giesen, and F. Butze, in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper TuB40.

2000 (1)

1999 (1)

1998 (1)

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

Avizonis, P. V.

Beach, R. J.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

Butze, F.

C. Stolzenburg, M. Larionov, A. Giesen, and F. Butze, in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper TuB40.

Ebbers, C. A.

Emanuel, M. A.

Fujikawa, S.

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

C. Stolzenburg, M. Larionov, A. Giesen, and F. Butze, in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper TuB40.

Honea, E. C.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

Kojima, T.

Konno, S.

Larionov, M.

C. Stolzenburg, M. Larionov, A. Giesen, and F. Butze, in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper TuB40.

Mitchell, S. C.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

Payne, S. A.

Skidmore, J. A.

Speth, J. A.

Stolzenburg, C.

C. Stolzenburg, M. Larionov, A. Giesen, and F. Butze, in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper TuB40.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

Yasui, K.

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, Appl. Phys. B 58, 365 (1994).

Opt. Lett. (3)

Other (2)

International Organization for Standardization, Lasers and Laser-Related Equipment--Test Methods for Laser Beam Parameters--Beam Width, Divergence Angle, and Beam Propagation Factor, ISO No. 11146 (1999).

C. Stolzenburg, M. Larionov, A. Giesen, and F. Butze, in Advanced Solid-State Photonics, Vol. 98 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper TuB40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the experimental setup. HR, high-reflective mirror; HT, high-transmittive mirror; TFP, thin-film polarizer.

Fig. 2
Fig. 2

Pulse shape of the IR and SH output pulses as well as the intracavity IR power. The repetition rate is 50 kHz , and the pumping power is 350 W .

Fig. 3
Fig. 3

Pulse shape and duration of the SH output pulses as a function of the amplification period. The repetition rate is 50 kHz , and the pumping power is 350 W .

Fig. 4
Fig. 4

Average laser output power and pulse duration as a function of the amplification period. The repetition rate is 50 kHz , and the pumping power is 350 W .

Fig. 5
Fig. 5

SH average laser power at a repetition rate of 50 and 100 kHz as a function of the incident pumping power. By adjusting the amplification period for each pumping power level, the pulse duration is kept constant at 300 ns .

Metrics