Abstract

A novel in-fiber polarizer based on a long-period fiber grating (LPFG) is written by using a focused CO2 laser beam to notch a photonic crystal fiber periodically. Such a polarizer exhibits a high polarization extinction ratio of more than 20dB over a wide wavelength range of 11nm near 1550nm and a very low temperature sensitivity of 3.9pm°C, which overcomes the disadvantages of the temperature sensitivity of other in-fiber polarizers created on conventional single-mode fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 5, 479 (1980).
    [CrossRef] [PubMed]
  2. R. B. Dyott, J. Bello, and V. A. Handerek, Opt. Lett. 12, 287 (1987).
    [CrossRef] [PubMed]
  3. K. M. Zhou, G. Simpson, X. F. Chen, L. Zhang, and I. Bennion, Opt. Lett. 30, 1285 (2005).
    [CrossRef] [PubMed]
  4. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
    [CrossRef]
  5. Y. P. Wang and Y. J. Rao, IEEE Sens. J. 5, 839 (2005).
    [CrossRef]
  6. H. S. Ryu, Y. Park, S. T. Oh, Y. J. Chung, and D. Y. Kim, Opt. Lett. 28, 155 (2003).
    [CrossRef] [PubMed]
  7. Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, Appl. Phys. Lett. 89, 151105-3 (2005).
  8. Large Mode Area Photonic Crystal Fiber (LMA-10) from BlazePhotonics, http://www.blazephotonics.com.
  9. Y. P. Wang, W. Jin, and D. N. Wang, IEEE J. Quantum Electron. 43, 101 (2007).
    [CrossRef]
  10. Y. N. Zhu, P. Shum, H. W. Bay, X. Y. Chen, C. H. Tan, and C. Lu, Opt. Lett. 29, 2608 (2004).
    [CrossRef] [PubMed]

2007 (1)

Y. P. Wang, W. Jin, and D. N. Wang, IEEE J. Quantum Electron. 43, 101 (2007).
[CrossRef]

2005 (3)

Y. P. Wang and Y. J. Rao, IEEE Sens. J. 5, 839 (2005).
[CrossRef]

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, Appl. Phys. Lett. 89, 151105-3 (2005).

K. M. Zhou, G. Simpson, X. F. Chen, L. Zhang, and I. Bennion, Opt. Lett. 30, 1285 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

1987 (1)

1980 (1)

Bay, H. W.

Bello, J.

Bennion, I.

Bergh, R. A.

Chen, X. F.

Chen, X. Y.

Chung, Y. J.

Dyott, R. B.

Handerek, V. A.

Jin, W.

Y. P. Wang, W. Jin, and D. N. Wang, IEEE J. Quantum Electron. 43, 101 (2007).
[CrossRef]

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, Appl. Phys. Lett. 89, 151105-3 (2005).

Kim, D. Y.

Lefevre, H. C.

Lu, C.

Oh, S. T.

Park, Y.

Peng, G.-D.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, Appl. Phys. Lett. 89, 151105-3 (2005).

Ran, Z. L.

Rao, Y. J.

Rao, Y.-J.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, Appl. Phys. Lett. 89, 151105-3 (2005).

Ryu, H. S.

Shaw, H. J.

Shum, P.

Simpson, G.

Tan, C. H.

Wang, D. N.

Y. P. Wang, W. Jin, and D. N. Wang, IEEE J. Quantum Electron. 43, 101 (2007).
[CrossRef]

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, Appl. Phys. Lett. 89, 151105-3 (2005).

Wang, Y. P.

Y. P. Wang, W. Jin, and D. N. Wang, IEEE J. Quantum Electron. 43, 101 (2007).
[CrossRef]

Y. P. Wang and Y. J. Rao, IEEE Sens. J. 5, 839 (2005).
[CrossRef]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, J. Lightwave Technol. 21, 1320 (2003).
[CrossRef]

Wang, Y.-P.

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, Appl. Phys. Lett. 89, 151105-3 (2005).

Zhang, L.

Zhou, K. M.

Zhu, T.

Zhu, Y. N.

Appl. Phys. Lett. (1)

Y.-P. Wang, D. N. Wang, W. Jin, Y.-J. Rao, and G.-D. Peng, Appl. Phys. Lett. 89, 151105-3 (2005).

IEEE J. Quantum Electron. (1)

Y. P. Wang, W. Jin, and D. N. Wang, IEEE J. Quantum Electron. 43, 101 (2007).
[CrossRef]

IEEE Sens. J. (1)

Y. P. Wang and Y. J. Rao, IEEE Sens. J. 5, 839 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (5)

Other (1)

Large Mode Area Photonic Crystal Fiber (LMA-10) from BlazePhotonics, http://www.blazephotonics.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning electron micrographs for the cross sections of the PCF employed (a) before and (b) after C O 2 laser irradiation, where the PCF is cut off at the B B plane; (c), (d) micrographs, observed from the C and D directions, respectively, with a microscope image (IM 713, Atto Instruments Ltd.), of the PCF with periodic notches (the C O 2 -laser-notched LPFG). The C O 2 laser irradiates from the D direction, and the dashed circle in (b) outlines the cross section of the PCF before the C O 2 laser irradiation. The grating pitch of the LPFG with 40 grating periods is 410 μ m .

Fig. 2
Fig. 2

(a) Transmission spectra of the C O 2 -laser-notched LPFG before and after a stretch strain of 500 μ ϵ is applied; (b) resonant wavelength and peak transmission attenuation of the LPFG as function of the stretch strain.

Fig. 3
Fig. 3

(a) Maximum and minimum losses; (b) PDL of the C O 2 -laser-notched LPFG before and after a stretch strain of 500 μ ϵ is applied.

Fig. 4
Fig. 4

(a) Loss corresponding to s- and p-polarized light; (b) polarization extinction ratio (PER) of the C O 2 -laser-notched LPFG before and after a stretch strain of 500 μ ϵ is applied.

Fig. 5
Fig. 5

Resonant wavelength and peak transmission attenuation of the C O 2 -laser-notched LPFG as function of the temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n residual + Δ n notch ,

Metrics