Abstract

We investigate a flexibly tunable multiwavelength semiconductor-optical-amplifier-based fiber ring laser with continuous wavelength spacing controllability incorporating a superimposed chirped fiber Bragg grating (CFBG). The wavelength spacing of a superimposed CFBG can be continuously controlled by symmetrically modifying the chirp bandwidth of the grating with the specially designed apparatus. We achieve a wide and continuous tuning range of the wavelength spacing from 0.35to0.78nm. The continuous tunability of the wavelength spacing is measured to be ±0.033nmmm. By controlling the reflection bandwidth of the tunable CFBG, we can independently adjust the number of lasing channels from 2 to 23 at the wavelength spacing of 0.51nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
    [CrossRef]
  2. H. Chen, Opt. Lett. 30, 619 (2005).
    [CrossRef] [PubMed]
  3. J. Yao, J. Yao, Z. Deng, and J. Liu, J. Lightwave Technol. 23, 2484 (2005).
    [CrossRef]
  4. Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
    [CrossRef]
  5. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]
  6. G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
    [CrossRef]
  7. Y. G. Han and S. B. Lee, Opt. Express 13, 9224 (2005).
    [CrossRef] [PubMed]

2006 (1)

2005 (3)

2004 (1)

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

2003 (1)

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

1995 (1)

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Bennion, I.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Capmany, J.

Chen, H.

Chung, Y.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Deng, Z.

Han, Y. G.

Y. G. Han and S. B. Lee, Opt. Express 13, 9224 (2005).
[CrossRef] [PubMed]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kang, J. U.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Kim, C. S.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Lee, S. B.

Liu, J.

Ngo, N. Q.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Ortega, B.

Paek, U. C.

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

Pastor, D.

Poole, S. B.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Sugden, K.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Tjin, S. C.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Town, G. E.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Williams, J. A. R.

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

Yang, J.

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Yao, J.

IEEE Photon. Technol. Lett. (3)

J. Yang, S. C. Tjin, and N. Q. Ngo, IEEE Photon. Technol. Lett. 16, 1026 (2004).
[CrossRef]

Y. G. Han, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, IEEE Photon. Technol. Lett. 15, 383 (2003).
[CrossRef]

G. E. Town, K. Sugden, J. A. R. Williams, I. Bennion, and S. B. Poole, IEEE Photon. Technol. Lett. 7, 78 (1995).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the multiwavelength SOA-based fiber ring laser with continuous wavelength spacing tunability. OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

Output spectrum of the multiwavelength SOA-based fiber ring laser. Wavelength spacing Δ λ = 0.51 , 23 lasing channels.

Fig. 3
Fig. 3

Output spectra of the continuously tunable multiwavelength SOA-based fiber ring laser with changes in the distance moved by the translation stage ( ± Δ y ) . (a) Δ λ = 0.69 nm and 19 channels for Δ y = + 5 mm ; (b) Δ λ = 0.78 and 16 channels for Δ y = + 7 mm ; (c) Δ λ = 0.46 nm and 24 channels for Δ y = 2 mm ; (d) Δ λ = 0.35 nm and 32 channels for Δ y = 5 mm .

Fig. 4
Fig. 4

Output spectra of the multiwavelength SOA-based fiber ring laser with the variation of the reflection bandwidth ( Δ B ) of the tunable CFBG. (a) Δ λ = 0.51 nm , 12 channels, Δ B = 6 nm ; (b) Δ λ = 0.51 , 17 channels, for Δ B = 9 nm ; (c) Δ λ = 0.51 nm , 23 channels, for Δ B = 12 nm .

Metrics