Abstract

By measuring the spectral loss characteristics of subwavelength-diameter terahertz fibers, our study supports the recent theory proposed by M. Sumetsky [Opt. Lett. 31, 870 (2006)] that diameter-variation-induced radiation is a dominant loss mechanism for subwavelength fibers in the low- (<1%) core-fraction-power regime. This physical mechanism limits the lowest guidable frequency in a subwavelength fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
    [CrossRef] [PubMed]
  2. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421, 241 (2003).
    [CrossRef] [PubMed]
  3. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, Opt. Lett. 31, 308 (2006).
    [CrossRef] [PubMed]
  4. G. Brambilla, V. Finazzi, and D. Richardson, Opt. Express 12, 2258 (2004).
    [CrossRef] [PubMed]
  5. M. Sumetsky, Opt. Lett. 31, 870 (2006).
    [CrossRef] [PubMed]
  6. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
    [CrossRef]
  7. D. H. Martin and E. Puplett, Infrared Phys. 10, 105 (1969).
    [CrossRef]

2006 (2)

2004 (1)

2003 (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421, 241 (2003).
[CrossRef] [PubMed]

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

1969 (1)

D. H. Martin and E. Puplett, Infrared Phys. 10, 105 (1969).
[CrossRef]

Agarwal, R.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421, 241 (2003).
[CrossRef] [PubMed]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Auston, D. H.

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Brambilla, G.

Chen, H. W.

Chen, L. J.

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Duan, X. F.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421, 241 (2003).
[CrossRef] [PubMed]

Finazzi, V.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Huang, Y.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421, 241 (2003).
[CrossRef] [PubMed]

Kao, T. F.

Lieber, C. M.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421, 241 (2003).
[CrossRef] [PubMed]

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Lu, J. Y.

Martin, D. H.

D. H. Martin and E. Puplett, Infrared Phys. 10, 105 (1969).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Puplett, E.

D. H. Martin and E. Puplett, Infrared Phys. 10, 105 (1969).
[CrossRef]

Richardson, D.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Sumetsky, M.

Sun, C. K.

Tong, L. M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Infrared Phys. (1)

D. H. Martin and E. Puplett, Infrared Phys. 10, 105 (1969).
[CrossRef]

Nature (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature 421, 241 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Propagation loss of three different THz fibers with diameters of 155, 210, and 550 μ m , as a function of wavelength.

Fig. 2
Fig. 2

THz spectral loss characteristic of the 550 μ m diameter PE fiber. Curve 1, measured result; curve 2, calculated loss due to fractional material absorption; Curves 3 and 4, calculated losses due to diameter-variation-induced radiation with d v = 5 μ m and d v = 50 nm , respectively. Characteristic length L is assumed to be 1 m .

Fig. 3
Fig. 3

(a) Measured minimum attenuation wavelength as a function of fiber diameter. Simulation results with different C.V. values and a fixed L = 1 m are provided for comparison. Four simulation curves, from top to bottom, correspond to parameters C.V. = 0.3 % , 1%, 3%, 10%, respectively. (b) Simulation results with different characteristic lengths and a fixed C.V. value of 3% are provided for comparison with the experimental results. Three simulation curves, from top to bottom, correspond to parameters L = 10 , 1, 0.1 m , respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ β 12 ( z ) 0.57 [ λ d 2 ( z ) ] exp [ 0.27 λ 2 d 2 ( z ) ] .

Metrics