Abstract

We present a method to control the absorption of a resonator by using a subwavelength structure consisting of thin metallic plates that behaves as a metamaterial film. We demonstrate the ability to tailor the conductivity of such a metallic subwavelength structure to achieve a resonator with the desired impedance matching for the mid-infrared range. This approach provides for broadband, as well as broad-angle, enhanced absorption. Theoretical analyses, as well as experimental results of the optical properties of a metallic NiCr structure at 812μm spectral range are introduced.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Mauskopf, J. J. Bock, H. Del Castillo, W. L. Holzapfel, and A. E. Lange, Appl. Opt. 36, 765 (1997).
    [CrossRef] [PubMed]
  2. A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
    [CrossRef]
  3. A. Wei, M. Lee, and Q. Hu, Opt. Lett. 30, 2563 (2005).
    [CrossRef]
  4. W. Becker, R. Fettig, and W. Ruppel, Infrared Phys. Technol. 40, 431 (1999).
    [CrossRef]
  5. G. A. Niklasson, J. Appl. Phys. 62, 258 (1987).
    [CrossRef]
  6. P. O'Neill and A. Ignatiev, Phys. Rev. B 18, 6540 (1978).
    [CrossRef]
  7. M. Cathelinaud, F. Lemarquis, and C. Amra, Appl. Opt. 41, 2546 (2002).
    [CrossRef] [PubMed]
  8. H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82, 1353 (2003).
    [CrossRef]
  9. M. Born and E. Wolf, in Principals of Optics, 7th ed. (Cambridge University Press, 2003).
  10. Y. Kaganovskii, H. Vladomirsky, and M. Rosenbluh, J. Appl. Phys. 100, 44317 (2006).
    [CrossRef]
  11. G. Fahsold, M. Sinther, A. Priebe, S. Diez, and A. Pucci, Phys. Rev. B 70, 115406 (2004).
    [CrossRef]
  12. M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
    [CrossRef]
  13. C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
    [CrossRef]
  14. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys. Rev. B 8, 3689 (1973).
    [CrossRef]

2006 (1)

Y. Kaganovskii, H. Vladomirsky, and M. Rosenbluh, J. Appl. Phys. 100, 44317 (2006).
[CrossRef]

2005 (1)

2004 (1)

G. Fahsold, M. Sinther, A. Priebe, S. Diez, and A. Pucci, Phys. Rev. B 70, 115406 (2004).
[CrossRef]

2003 (1)

H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82, 1353 (2003).
[CrossRef]

2002 (1)

2000 (1)

M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
[CrossRef]

1999 (1)

W. Becker, R. Fettig, and W. Ruppel, Infrared Phys. Technol. 40, 431 (1999).
[CrossRef]

1998 (1)

C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
[CrossRef]

1997 (1)

1988 (1)

A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
[CrossRef]

1987 (1)

G. A. Niklasson, J. Appl. Phys. 62, 258 (1987).
[CrossRef]

1978 (1)

P. O'Neill and A. Ignatiev, Phys. Rev. B 18, 6540 (1978).
[CrossRef]

1973 (1)

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys. Rev. B 8, 3689 (1973).
[CrossRef]

Abeles, B.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys. Rev. B 8, 3689 (1973).
[CrossRef]

Amra, C.

Bäumer, M.

M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
[CrossRef]

Becker, W.

W. Becker, R. Fettig, and W. Ruppel, Infrared Phys. Technol. 40, 431 (1999).
[CrossRef]

Bock, J. J.

Born, M.

M. Born and E. Wolf, in Principals of Optics, 7th ed. (Cambridge University Press, 2003).

Bosman, H.

H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82, 1353 (2003).
[CrossRef]

Cathelinaud, M.

Cody, G. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys. Rev. B 8, 3689 (1973).
[CrossRef]

Cohen, R. W.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys. Rev. B 8, 3689 (1973).
[CrossRef]

Coutts, M. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys. Rev. B 8, 3689 (1973).
[CrossRef]

Del Castillo, H.

Diez, S.

G. Fahsold, M. Sinther, A. Priebe, S. Diez, and A. Pucci, Phys. Rev. B 70, 115406 (2004).
[CrossRef]

Fahsold, G.

G. Fahsold, M. Sinther, A. Priebe, S. Diez, and A. Pucci, Phys. Rev. B 70, 115406 (2004).
[CrossRef]

Fettig, R.

W. Becker, R. Fettig, and W. Ruppel, Infrared Phys. Technol. 40, 431 (1999).
[CrossRef]

Frank, M.

M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
[CrossRef]

Freund, H. J.

M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
[CrossRef]

Gilgenbach, R. M.

H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82, 1353 (2003).
[CrossRef]

Heemeier, M.

M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
[CrossRef]

Henry, C. R.

C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
[CrossRef]

Holzapfel, W. L.

Hu, Q.

Ignatiev, A.

P. O'Neill and A. Ignatiev, Phys. Rev. B 18, 6540 (1978).
[CrossRef]

Kaganovskii, Y.

Y. Kaganovskii, H. Vladomirsky, and M. Rosenbluh, J. Appl. Phys. 100, 44317 (2006).
[CrossRef]

Kühnemuth, R.

M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
[CrossRef]

Lange, A. E.

Lau, Y. Y.

H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82, 1353 (2003).
[CrossRef]

Lee, M.

Lemarquis, F.

Mauskopf, P. D.

Niklasson, G. A.

G. A. Niklasson, J. Appl. Phys. 62, 258 (1987).
[CrossRef]

O'Neill, P.

P. O'Neill and A. Ignatiev, Phys. Rev. B 18, 6540 (1978).
[CrossRef]

Parsons, A. D.

A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
[CrossRef]

Pedder, D. J.

A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
[CrossRef]

Priebe, A.

G. Fahsold, M. Sinther, A. Priebe, S. Diez, and A. Pucci, Phys. Rev. B 70, 115406 (2004).
[CrossRef]

Pucci, A.

G. Fahsold, M. Sinther, A. Priebe, S. Diez, and A. Pucci, Phys. Rev. B 70, 115406 (2004).
[CrossRef]

Rosenbluh, M.

Y. Kaganovskii, H. Vladomirsky, and M. Rosenbluh, J. Appl. Phys. 100, 44317 (2006).
[CrossRef]

Ruppel, W.

W. Becker, R. Fettig, and W. Ruppel, Infrared Phys. Technol. 40, 431 (1999).
[CrossRef]

Sinther, M.

G. Fahsold, M. Sinther, A. Priebe, S. Diez, and A. Pucci, Phys. Rev. B 70, 115406 (2004).
[CrossRef]

Stempel, S.

M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
[CrossRef]

Vladomirsky, H.

Y. Kaganovskii, H. Vladomirsky, and M. Rosenbluh, J. Appl. Phys. 100, 44317 (2006).
[CrossRef]

Wei, A.

Wolf, E.

M. Born and E. Wolf, in Principals of Optics, 7th ed. (Cambridge University Press, 2003).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82, 1353 (2003).
[CrossRef]

Infrared Phys. Technol. (1)

W. Becker, R. Fettig, and W. Ruppel, Infrared Phys. Technol. 40, 431 (1999).
[CrossRef]

J. Appl. Phys. (2)

G. A. Niklasson, J. Appl. Phys. 62, 258 (1987).
[CrossRef]

Y. Kaganovskii, H. Vladomirsky, and M. Rosenbluh, J. Appl. Phys. 100, 44317 (2006).
[CrossRef]

J. Vac. Sci. Technol. A (1)

A. D. Parsons and D. J. Pedder, J. Vac. Sci. Technol. A 6, 1686 (1988).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, Phys. Rev. B 8, 3689 (1973).
[CrossRef]

G. Fahsold, M. Sinther, A. Priebe, S. Diez, and A. Pucci, Phys. Rev. B 70, 115406 (2004).
[CrossRef]

P. O'Neill and A. Ignatiev, Phys. Rev. B 18, 6540 (1978).
[CrossRef]

Surf. Sci. (1)

M. Bäumer, M. Frank, M. Heemeier, R. Kühnemuth, S. Stempel, and H. J. Freund, Surf. Sci. 454-456, 957 (2000).
[CrossRef]

Surf. Sci. Rep. (1)

C. R. Henry, Surf. Sci. Rep. 31, 231 (1998).
[CrossRef]

Other (1)

M. Born and E. Wolf, in Principals of Optics, 7th ed. (Cambridge University Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Concept of a resonant absorber using a metallic thin film. The metallic film is placed λ 4 away from a perfect mirror. (b) Concept of a resonant absorber using a metallic subwavelength structure as a metamaterial absorbing layer. (c) Optical microscope image of the metallic NiCr subwavelength structure with a 4 μ m period, 30 nm thickness, and q = 0.5 .

Fig. 2
Fig. 2

Measured (solid curve), simulated (circles), and theoretical (dashed curve) values of (a) absorption coefficient k and (b) refractive index n as a function of the wavelength for the metallic NiCr structure shown in Fig. 1c. The simulation was calculated by use of FDTD, and the theoretical result was obtained by use of the effective medium theory [Eq. (3), L m = 0 ]. Inset in (b), measured n and k of a uniform metallic NiCr thin film for different thickness at 11 μ m wavelength illumination.

Fig. 3
Fig. 3

(a) Simulated (FDTD; open and closed circles), theoretical (effective medium theory [Eq. (3), L m = 0 ]; solid and dashed curves), and measured (cross and circled cross points) values of n and k as a function of area fill factor, q 2 , for the structure of metallic NiCr plates shown in Fig. 1c at the 11 μ m wavelength. (b) Simulated (FDTD; closed circles), theoretical (effective medium theory [Eq. (4)]; solid curve), and measured (cross point) values of n k as a function of area fill factor, q 2 , for the metallic NiCr plates structure depicted in Fig. 1c at the 11 μ m wavelength. The dashed curve represents the effective medium approximation for a structure composed of metallic NiCr spheres [ 30 nm diameter; Eq. (3) L m = 1 3 ]. The open circles represent FDTD calculation of a NiCr structure ( 0.1 μ m period with 30 nm thickness).

Fig. 4
Fig. 4

Calculated absorption of a resonator configuration (air gap 2.3 μ m ) as a function of (a) incident angle (at 9 μ m wavelength) and (b) incident wavelength (at normal incident angle) for the NiCr subwavelength structure depicted in Fig. 1c [solid curve; based on the measured n, k shown in Fig. 2] and for 10 nm (dashed curve) and 30 nm (dotted curve) of uniform NiCr thin films.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A = 4 Z 0 σ h ( Z 0 σ h + 1 ) 2 ,
n k = σ ω ϵ 0 = λ 4 π h ,
ϵ ( ω ) ϵ i ( ω ) L m ϵ ( ω ) + ( 1 L m ) ϵ i ( ω ) = f ϵ m ( ω ) ϵ i ( ω ) L m ϵ m ( ω ) + ( 1 L m ) ϵ i ( ω ) ,
n ( ω ) k ( ω ) = q 2 n m ( ω ) k m ( ω ) .

Metrics