Abstract

Evidence for visible quantum cutting involving the emission of two visible photons for each vacuum-ultraviolet (VUV) photon absorbed is demonstrated in SrAl12O19:Pr,Cr using synchrotron radiation as one of the excitation sources. Upon VUV excitation of the 4f5d states of Pr3+, quantum cutting could occur by a two-step energy transfer from Pr3+ to Cr3+ by cross relaxation and sequential transfer of the remaining excitation energy. A theoretical visible quantum efficiency of 147% is estimated in SrAl12O19:2% Pr,5% Cr, suggesting the possibility of a VUV phosphor with visible quantum efficiency higher than 100% based on Pr3+Cr3+ pair in oxide materials.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
    [CrossRef] [PubMed]
  2. A. P. Vink, P. Dorenbos, and C. W. E. van Eijk, J. Solid State Chem. 171, 308 (2003).
    [CrossRef]
  3. Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, Appl. Phys. Lett. 88, 061906 (2006).
    [CrossRef]
  4. A. M. Srivastava and W. W. Beers, J. Lumin. 71, 285 (1997).
    [CrossRef]
  5. S. H. Huang, X. J. Wang, B. J. Chen, D. Jia, and W. M. Yen, J. Lumin. 102, 344 (2003).
    [CrossRef]
  6. W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, Phys. Rev. B 43, 5234 (1991).
    [CrossRef]
  7. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
    [CrossRef]
  8. R. Reisfeld and N. Lieblich-Soffer, J. Solid State Chem. 28, 391 (1979).
    [CrossRef]

2006 (1)

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

2003 (2)

A. P. Vink, P. Dorenbos, and C. W. E. van Eijk, J. Solid State Chem. 171, 308 (2003).
[CrossRef]

S. H. Huang, X. J. Wang, B. J. Chen, D. Jia, and W. M. Yen, J. Lumin. 102, 344 (2003).
[CrossRef]

1999 (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

1997 (1)

A. M. Srivastava and W. W. Beers, J. Lumin. 71, 285 (1997).
[CrossRef]

1991 (1)

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, Phys. Rev. B 43, 5234 (1991).
[CrossRef]

1979 (1)

R. Reisfeld and N. Lieblich-Soffer, J. Solid State Chem. 28, 391 (1979).
[CrossRef]

1953 (1)

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

Beers, W. W.

A. M. Srivastava and W. W. Beers, J. Lumin. 71, 285 (1997).
[CrossRef]

Chen, B. J.

S. H. Huang, X. J. Wang, B. J. Chen, D. Jia, and W. M. Yen, J. Lumin. 102, 344 (2003).
[CrossRef]

Chen, Y.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

Denker, B.

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, Phys. Rev. B 43, 5234 (1991).
[CrossRef]

Dexter, D. L.

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

Donker, H.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Dorenbos, P.

A. P. Vink, P. Dorenbos, and C. W. E. van Eijk, J. Solid State Chem. 171, 308 (2003).
[CrossRef]

Fu, Y.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

Huang, S. H.

S. H. Huang, X. J. Wang, B. J. Chen, D. Jia, and W. M. Yen, J. Lumin. 102, 344 (2003).
[CrossRef]

Jaffe, S.

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, Phys. Rev. B 43, 5234 (1991).
[CrossRef]

Jia, D.

S. H. Huang, X. J. Wang, B. J. Chen, D. Jia, and W. M. Yen, J. Lumin. 102, 344 (2003).
[CrossRef]

Jia, W.

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, Phys. Rev. B 43, 5234 (1991).
[CrossRef]

Lieblich-Soffer, N.

R. Reisfeld and N. Lieblich-Soffer, J. Solid State Chem. 28, 391 (1979).
[CrossRef]

Liu, H.

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, Phys. Rev. B 43, 5234 (1991).
[CrossRef]

Meijerink, A.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Oskam, K. D.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Qi, Z.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

Reisfeld, R.

R. Reisfeld and N. Lieblich-Soffer, J. Solid State Chem. 28, 391 (1979).
[CrossRef]

Shi, C.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

Srivastava, A. M.

A. M. Srivastava and W. W. Beers, J. Lumin. 71, 285 (1997).
[CrossRef]

van Eijk, C. W. E.

A. P. Vink, P. Dorenbos, and C. W. E. van Eijk, J. Solid State Chem. 171, 308 (2003).
[CrossRef]

Vink, A. P.

A. P. Vink, P. Dorenbos, and C. W. E. van Eijk, J. Solid State Chem. 171, 308 (2003).
[CrossRef]

Wang, X. J.

S. H. Huang, X. J. Wang, B. J. Chen, D. Jia, and W. M. Yen, J. Lumin. 102, 344 (2003).
[CrossRef]

Wegh, R. T.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Yan, W.

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

Yen, W. M.

S. H. Huang, X. J. Wang, B. J. Chen, D. Jia, and W. M. Yen, J. Lumin. 102, 344 (2003).
[CrossRef]

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, Phys. Rev. B 43, 5234 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Chen, C. Shi, W. Yan, Z. Qi, and Y. Fu, Appl. Phys. Lett. 88, 061906 (2006).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

J. Lumin. (2)

A. M. Srivastava and W. W. Beers, J. Lumin. 71, 285 (1997).
[CrossRef]

S. H. Huang, X. J. Wang, B. J. Chen, D. Jia, and W. M. Yen, J. Lumin. 102, 344 (2003).
[CrossRef]

J. Solid State Chem. (2)

R. Reisfeld and N. Lieblich-Soffer, J. Solid State Chem. 28, 391 (1979).
[CrossRef]

A. P. Vink, P. Dorenbos, and C. W. E. van Eijk, J. Solid State Chem. 171, 308 (2003).
[CrossRef]

Phys. Rev. B (1)

W. Jia, H. Liu, S. Jaffe, W. M. Yen, and B. Denker, Phys. Rev. B 43, 5234 (1991).
[CrossRef]

Science (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Part of the energy-level scheme of Pr 3 + and Cr 3 + in SAO, showing the possibility of QC via a two-step ET from Pr 3 + to Cr 3 + .

Fig. 2
Fig. 2

a, VUV and UV excitation spectra (solid) of the Cr 3 + 685 nm emission (dashed) in SAO:Cr. (b) VUV excitation spectrum (solid) of Pr 3 + 402 nm emission and emission spectrum (dashed) upon 205 nm excitation in SAO:Pr.

Fig. 3
Fig. 3

a, VUV and UV excitation spectra of the Cr 3 + 685 nm emission in SAO:Pr,Cr. b, Emission spectra of SAO:Pr,Cr upon 205 nm excitation (solid) and under 465 nm excitation (dashed). Two emission spectra are scaled to the P 0 3 emission intensities.

Fig. 4
Fig. 4

Emission spectra of Pr 3 + in SAO : 2 % Pr , x % Cr upon 205 nm excitation (left) and under 465 nm excitation (right). Inset, Normalized emission spectra of Pr 3 + upon 205 nm excitation.

Fig. 5
Fig. 5

Fluorescence decay curves of the Pr 3 + P 0 3 emission in SAO : 2 % Pr , x % Cr under 465 nm excitation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W CR 1 γ ( S 0 1 I 6 1 ) = R τ 0 R 0 τ 1 .
W Sum γ ( S 0 1 I 6 1 ) = [ I ( S 0 1 I 6 6 ) 0 I ( S 0 1 I 6 6 ) x 1 ] α ,
η CR 1 = W CR 1 [ W Sum + γ ( S 0 1 I 6 1 ) α ] ,
η Sum = W Sum [ W Sum + γ ( S 0 1 I 6 1 ) α ] .
η QC = η Sum + [ η CR 1 + ( 1 η Sum ) α ] [ η ET 2 + ( 1 η ET 2 ) β ] ,

Metrics