Abstract

An add–drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add–drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01μm. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, J. Low Temp. Phys. 15, 998 (1997).
  2. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
    [CrossRef]
  3. B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
    [CrossRef]
  4. C. Y. Fong and A. W. Poon, Opt. Express 11, 2897 (2003).
    [CrossRef] [PubMed]
  5. C. Y. Fong and A. W. Poon, Opt. Express 12, 4864 (2004).
    [CrossRef] [PubMed]
  6. M. Lohmeyer, Opt. Quantum Electron. 34, 541 (2002).
  7. M. Hammer, Opt. Commun. 214, 155 (2002).
    [CrossRef]
  8. N. Ma, C. Li, and A. W. Poon, IEEE Photon. Technol. Lett. 16, 2487 (2004).
    [CrossRef]
  9. C. Li, N. Ma, and A. W. Poon, Opt. Lett. 29, 471 (2004).
    [CrossRef] [PubMed]
  10. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
    [CrossRef]
  11. A. Taflove, Advances in Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech, 1998).
  12. I. D. Chremmos and N. K. Uzunoglu, J. Opt. Soc. Am. A 21, 267 (2004).
    [CrossRef]
  13. Q. Chen, Y. Z. Huang, and L. J. Yu, IEEE J. Quantum Electron. 42, 59 (2006).
    [CrossRef]
  14. Q. Chen, Y. D. Yang, and Y. Z. Huang, Appl. Phys. Lett. 89, 061118 (2006).
    [CrossRef]
  15. J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  16. Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, IEEE J. Quantum Electron. 41, 997 (2005).
    [CrossRef]

2006 (2)

Q. Chen, Y. Z. Huang, and L. J. Yu, IEEE J. Quantum Electron. 42, 59 (2006).
[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, Appl. Phys. Lett. 89, 061118 (2006).
[CrossRef]

2005 (1)

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, IEEE J. Quantum Electron. 41, 997 (2005).
[CrossRef]

2004 (4)

2003 (1)

2002 (2)

M. Lohmeyer, Opt. Quantum Electron. 34, 541 (2002).

M. Hammer, Opt. Commun. 214, 155 (2002).
[CrossRef]

1999 (3)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, J. Low Temp. Phys. 15, 998 (1997).

1994 (1)

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Berenger, J. P.

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Chen, Q.

Q. Chen, Y. Z. Huang, and L. J. Yu, IEEE J. Quantum Electron. 42, 59 (2006).
[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, Appl. Phys. Lett. 89, 061118 (2006).
[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, IEEE J. Quantum Electron. 41, 997 (2005).
[CrossRef]

Chin, M. K.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Chremmos, I. D.

Chu, S. T.

B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, J. Low Temp. Phys. 15, 998 (1997).

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Fong, C. Y.

Foresi, J. S.

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, J. Low Temp. Phys. 15, 998 (1997).

Guo, W. H.

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, IEEE J. Quantum Electron. 41, 997 (2005).
[CrossRef]

Hammer, M.

M. Hammer, Opt. Commun. 214, 155 (2002).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, J. Low Temp. Phys. 15, 998 (1997).

Ho, S. T.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Huang, Y. Z.

Q. Chen, Y. Z. Huang, and L. J. Yu, IEEE J. Quantum Electron. 42, 59 (2006).
[CrossRef]

Q. Chen, Y. D. Yang, and Y. Z. Huang, Appl. Phys. Lett. 89, 061118 (2006).
[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, IEEE J. Quantum Electron. 41, 997 (2005).
[CrossRef]

Ippen, E.

B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
[CrossRef]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Kaneko, T.

B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Kokubun, Y.

B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
[CrossRef]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, J. Low Temp. Phys. 15, 998 (1997).

Li, C.

N. Ma, C. Li, and A. W. Poon, IEEE Photon. Technol. Lett. 16, 2487 (2004).
[CrossRef]

C. Li, N. Ma, and A. W. Poon, Opt. Lett. 29, 471 (2004).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, J. Low Temp. Phys. 15, 998 (1997).

Lohmeyer, M.

M. Lohmeyer, Opt. Quantum Electron. 34, 541 (2002).

Ma, N.

C. Li, N. Ma, and A. W. Poon, Opt. Lett. 29, 471 (2004).
[CrossRef] [PubMed]

N. Ma, C. Li, and A. W. Poon, IEEE Photon. Technol. Lett. 16, 2487 (2004).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Pierson, T.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Poon, A. W.

Ren, Z.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Ripin, W. P. D.

B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
[CrossRef]

Taflove, A.

A. Taflove, Advances in Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech, 1998).

Uzunoglu, N. K.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Wang, L.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Wu, S. L.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Yang, Y. D.

Q. Chen, Y. D. Yang, and Y. Z. Huang, Appl. Phys. Lett. 89, 061118 (2006).
[CrossRef]

Youtsey, C.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Yu, L. J.

Q. Chen, Y. Z. Huang, and L. J. Yu, IEEE J. Quantum Electron. 42, 59 (2006).
[CrossRef]

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, IEEE J. Quantum Electron. 41, 997 (2005).
[CrossRef]

Zhao, W.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Zhao, Y. G.

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Chen, Y. D. Yang, and Y. Z. Huang, Appl. Phys. Lett. 89, 061118 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

Q. Chen, Y. Z. Huang, W. H. Guo, and L. J. Yu, IEEE J. Quantum Electron. 41, 997 (2005).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, IEEE J. Quantum Electron. 35, 1322 (1999).
[CrossRef]

Q. Chen, Y. Z. Huang, and L. J. Yu, IEEE J. Quantum Electron. 42, 59 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhao, and S. T. Ho, IEEE Photon. Technol. Lett. 11, 1620 (1999).
[CrossRef]

B. E. Little, S. T. Chu, W. P. D. Ripin, T. Kaneko, Y. Kokubun, and E. Ippen, IEEE Photon. Technol. Lett. 11, 215 (1999).
[CrossRef]

N. Ma, C. Li, and A. W. Poon, IEEE Photon. Technol. Lett. 16, 2487 (2004).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Low Temp. Phys. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J. P. Laine, J. Low Temp. Phys. 15, 998 (1997).

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

M. Hammer, Opt. Commun. 214, 155 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. Lohmeyer, Opt. Quantum Electron. 34, 541 (2002).

Other (1)

A. Taflove, Advances in Computational Electrodynamics—The Finite-Difference Time-Domain Method (Artech, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a square cavity filter.

Fig. 2
Fig. 2

Normalized transmission spectra at through, drop, and add ports are plotted as dotted, dashed, and solid curves for a deformed square cavity filter with different cut lengths at the sides.

Fig. 3
Fig. 3

Modes wavelengths of TM 4 , 6 o and TM 5 , 5 versus cut length in an isolated cut corner square cavity with a = 1.91 μ m and n = 3.2 . The field distributions of the E z components of TM 5 , 5 and TM 4 , 6 at cut = 0 are shown in insets a and b, respectively.

Fig. 4
Fig. 4

Modes wavelengths of TM 4 , 6 o and TM 5 , 5 versus radius in an isolated circular corner square cavity with a = 1.91 μ m , n = 3.2 . The normalized transmission spectra at the through (open circles), drop (dashed curve), and add (solid curve) ports are plotted in the inset for a circular corner square cavity filter with R = 0.37 μ m , and the other parameters are the same as in Fig. 2.

Fig. 5
Fig. 5

(a) Mode wavelengths of TM 7 , 9 o , TM 8 , 8 , TM 8 , 9 , TM 9 , 8 , TM 8 , 10 o , and TM 9 , 9 versus radius in an isolated circular corner square cavity with a = 3.01 μ m and n = 3.2 . (b) Normalized transmission spectra at the through (solid curve) and drop (dashed curve) ports in a circular corner square cavity filter with R = 0.5 μ m and a = 3.01 μ m , and the other parameters are the same as in Fig. 2.

Metrics