Abstract

The sensitivity of an electro-optic (EO) field sensor depends inversely on the dielectric constant of the nonlinear crystal. In EO sensors based on lithium niobate the effective value of this dielectric constant is affected by dielectric relaxation effects and is identified with its smaller, high-frequency component. Because of this effect, the EO modulation is significantly enhanced, thus improving the field strength sensitivity.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 97, 113108 (2005).
    [CrossRef]
  2. K. Liu, H.-S. Kang, T.-K. Kim, and X.-C. Zhang, Appl. Phys. Lett. 81, 4155 (2002).
  3. D. Kirillov and J. Feinberg, Opt. Lett. 16, 1520 (1991).
    [CrossRef] [PubMed]
  4. A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 98, 043113 (2005).
    [CrossRef]
  5. A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, Appl. Phys. Lett. 88, 141106 (2006).
    [CrossRef]
  6. H. Frölich, Theory of Dielectrics (Oxford, 1958).
  7. S. N. Al-Refaie and H. S. B. Elayyan, J. Mater. Sci. 28, 2233 (1993).
    [CrossRef]
  8. A. S. Kewitsch, A. Saito, A. Yariv, M. Segev, and R. R. Neurgaonkar, J. Opt. Soc. Am. B 12, 1460 (1995).
    [CrossRef]
  9. R. R. Neurgaonkar and W. K. Cory, J. Opt. Soc. Am. B 3, 274 (1986).
    [CrossRef]

2006 (1)

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

2005 (2)

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

2002 (1)

K. Liu, H.-S. Kang, T.-K. Kim, and X.-C. Zhang, Appl. Phys. Lett. 81, 4155 (2002).

1995 (1)

1993 (1)

S. N. Al-Refaie and H. S. B. Elayyan, J. Mater. Sci. 28, 2233 (1993).
[CrossRef]

1991 (1)

1986 (1)

Al-Refaie, S. N.

S. N. Al-Refaie and H. S. B. Elayyan, J. Mater. Sci. 28, 2233 (1993).
[CrossRef]

Cory, W. K.

Elayyan, H. S. B.

S. N. Al-Refaie and H. S. B. Elayyan, J. Mater. Sci. 28, 2233 (1993).
[CrossRef]

Feinberg, J.

Frölich, H.

H. Frölich, Theory of Dielectrics (Oxford, 1958).

Garzarella, A.

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

Kang, H.-S.

K. Liu, H.-S. Kang, T.-K. Kim, and X.-C. Zhang, Appl. Phys. Lett. 81, 4155 (2002).

Kewitsch, A. S.

Kim, T.-K.

K. Liu, H.-S. Kang, T.-K. Kim, and X.-C. Zhang, Appl. Phys. Lett. 81, 4155 (2002).

Kirillov, D.

Liu, K.

K. Liu, H.-S. Kang, T.-K. Kim, and X.-C. Zhang, Appl. Phys. Lett. 81, 4155 (2002).

Neurgaonkar, R. R.

Qadri, S. B.

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Saito, A.

Segev, M.

Wieting, T. J.

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Wu, D. H.

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

Yariv, A.

Zhang, X.-C.

K. Liu, H.-S. Kang, T.-K. Kim, and X.-C. Zhang, Appl. Phys. Lett. 81, 4155 (2002).

Appl. Phys. Lett. (2)

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

K. Liu, H.-S. Kang, T.-K. Kim, and X.-C. Zhang, Appl. Phys. Lett. 81, 4155 (2002).

J. Appl. Phys. (2)

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

J. Mater. Sci. (1)

S. N. Al-Refaie and H. S. B. Elayyan, J. Mater. Sci. 28, 2233 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Other (1)

H. Frölich, Theory of Dielectrics (Oxford, 1958).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

EO modulation amplitude versus external field strength V d at 2 kHz for our 6 mm Li Nb O 3 crystal. The responsivities (slopes) of the contact and air gap data determine the values of r 33 and ϵ eff .

Fig. 2
Fig. 2

Response of EO sensor to a dc field step input. The decay in the modulation is due to gradual growth of the depolarization field within the EO crystal. The time evolution of this depolarization field follows the predictions of dielectric theory, shown in the inset.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m = [ γ π L n e 3 r 33 3 λ ] E ext ϵ eff ,

Metrics