Abstract

Quasi-phase-matched second-harmonic generation of 532nm radiation in 25°-rotated, x-cut, near-stoichiometric lithium tantalate has been performed. Using a face-normal topology for frequency conversion applications allows scalable surface area to avoid surface and volume damage in high-power interactions. First-order, quasi-phase-matched second-harmonic generation was achieved using near-stoichiometric lithium tantalate fabricated by vapor transport equilibration. These crystals supported 1J of 1064nm radiation and generated 21mJ of 532nm radiation from a 7ns, Q-switched Nd:YAG laser within a factor of 4.2 of expectation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
    [CrossRef]
  2. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
    [CrossRef]
  3. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197, 889 (1999).
    [CrossRef]
  4. F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
    [CrossRef]
  5. H. Ishizuki and T. Taira, Opt. Lett. 30, 2918 (2005).
    [CrossRef] [PubMed]
  6. K. Nakamura, T. Hatanaka, and H. Ito, Jpn. J. Appl. Phys., Part 1 40, L337 (2001).
    [CrossRef]
  7. D. S. Hum, R. K. Route, G. D. Miller, and M. M. Fejer, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CThU.
  8. I. V. Ostrovskii and A. B. Nadtochiy, J. Appl. Phys. 99, 114106 (2006).
    [CrossRef]
  9. S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, J. Appl. Phys. 90, 2949 (2001).
    [CrossRef]
  10. M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Opt. Lett. 29, 1775 (2004).
    [CrossRef] [PubMed]
  11. L. Tian, V. Gopalan, and L. Galambos, Appl. Phys. Lett. 85, 4445 (2004).
    [CrossRef]
  12. D. Eimerl, IEEE J. Quantum Electron. 23, 575 (1987).
    [CrossRef]

2006 (1)

I. V. Ostrovskii and A. B. Nadtochiy, J. Appl. Phys. 99, 114106 (2006).
[CrossRef]

2005 (1)

2004 (3)

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Opt. Lett. 29, 1775 (2004).
[CrossRef] [PubMed]

L. Tian, V. Gopalan, and L. Galambos, Appl. Phys. Lett. 85, 4445 (2004).
[CrossRef]

F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
[CrossRef]

2001 (3)

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, J. Appl. Phys. 90, 2949 (2001).
[CrossRef]

K. Nakamura, T. Hatanaka, and H. Ito, Jpn. J. Appl. Phys., Part 1 40, L337 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
[CrossRef]

2000 (1)

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

1999 (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197, 889 (1999).
[CrossRef]

1987 (1)

D. Eimerl, IEEE J. Quantum Electron. 23, 575 (1987).
[CrossRef]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
[CrossRef]

Baumer, C.

F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
[CrossRef]

Eimerl, D.

D. Eimerl, IEEE J. Quantum Electron. 23, 575 (1987).
[CrossRef]

Fejer, M. M.

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Opt. Lett. 29, 1775 (2004).
[CrossRef] [PubMed]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, and M. M. Fejer, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CThU.

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
[CrossRef]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, J. Appl. Phys. 90, 2949 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197, 889 (1999).
[CrossRef]

Galambos, L.

L. Tian, V. Gopalan, and L. Galambos, Appl. Phys. Lett. 85, 4445 (2004).
[CrossRef]

Gopalan, V.

L. Tian, V. Gopalan, and L. Galambos, Appl. Phys. Lett. 85, 4445 (2004).
[CrossRef]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, J. Appl. Phys. 90, 2949 (2001).
[CrossRef]

Hatanaka, T.

K. Nakamura, T. Hatanaka, and H. Ito, Jpn. J. Appl. Phys., Part 1 40, L337 (2001).
[CrossRef]

Hesse, H.

F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
[CrossRef]

Holtmann, F.

F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
[CrossRef]

Hum, D. S.

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Opt. Lett. 29, 1775 (2004).
[CrossRef] [PubMed]

D. S. Hum, R. K. Route, G. D. Miller, and M. M. Fejer, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CThU.

Imbrock, J.

F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
[CrossRef]

Ishizuki, H.

Ito, H.

K. Nakamura, T. Hatanaka, and H. Ito, Jpn. J. Appl. Phys., Part 1 40, L337 (2001).
[CrossRef]

Katz, M.

Kim, S.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, J. Appl. Phys. 90, 2949 (2001).
[CrossRef]

Kip, D.

F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
[CrossRef]

Kitamura, K.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, J. Appl. Phys. 90, 2949 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197, 889 (1999).
[CrossRef]

Kratzig, E.

F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
[CrossRef]

Miller, G. D.

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Opt. Lett. 29, 1775 (2004).
[CrossRef] [PubMed]

D. S. Hum, R. K. Route, G. D. Miller, and M. M. Fejer, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CThU.

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Nadtochiy, A. B.

I. V. Ostrovskii and A. B. Nadtochiy, J. Appl. Phys. 99, 114106 (2006).
[CrossRef]

Nakamura, K.

K. Nakamura, T. Hatanaka, and H. Ito, Jpn. J. Appl. Phys., Part 1 40, L337 (2001).
[CrossRef]

Niwa, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197, 889 (1999).
[CrossRef]

Ostrovskii, I. V.

I. V. Ostrovskii and A. B. Nadtochiy, J. Appl. Phys. 99, 114106 (2006).
[CrossRef]

Parameswaran, K. R.

Route, R. K.

M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Opt. Lett. 29, 1775 (2004).
[CrossRef] [PubMed]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, and M. M. Fejer, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CThU.

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Suzuki, E.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197, 889 (1999).
[CrossRef]

Taira, T.

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

Tian, L.

L. Tian, V. Gopalan, and L. Galambos, Appl. Phys. Lett. 85, 4445 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, l970 (2001).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, Appl. Phys. Lett. 77, 2494 (2000).
[CrossRef]

L. Tian, V. Gopalan, and L. Galambos, Appl. Phys. Lett. 85, 4445 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Eimerl, IEEE J. Quantum Electron. 23, 575 (1987).
[CrossRef]

J. Appl. Phys. (3)

F. Holtmann, J. Imbrock, C. Baumer, H. Hesse, E. Kratzig, and D. Kip, J. Appl. Phys. 96, 7455 (2004).
[CrossRef]

I. V. Ostrovskii and A. B. Nadtochiy, J. Appl. Phys. 99, 114106 (2006).
[CrossRef]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, J. Appl. Phys. 90, 2949 (2001).
[CrossRef]

J. Cryst. Growth (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197, 889 (1999).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

K. Nakamura, T. Hatanaka, and H. Ito, Jpn. J. Appl. Phys., Part 1 40, L337 (2001).
[CrossRef]

Opt. Lett. (2)

Other (1)

D. S. Hum, R. K. Route, G. D. Miller, and M. M. Fejer, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2004), paper CThU.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a, Topology of large aperture periodically poled crystals. Light propagates through the large wafer face and has a component of the electric field polarized along the z-axis, enabling efficient SHG among other nonlinear interactions. b, For 25°-rotated ( θ = 25 ° ) , x-cut substrates, light incident at near Brewster’s angle, θ B , allows a collinear SHG interaction.

Fig. 2
Fig. 2

Angular tuning curve of SHG power (in arbitrary units) as a function of incident fundamental angle. The dotted–dashed curve represents the theoretical angular tuning curve and the circles represent measured data. Inset, photograph of 25°-rotated domains ( + y surface) revealed by chemical etching in hydrofluoric acid. The domain period is 8 μ m .

Fig. 3
Fig. 3

Spatial map of the generated 532 nm power as a function of position.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t 50 % n 1 2 n 2 η 0 3 ω 1 2 ϵ 0 2 d eff 2 τ F tanh 1 ( 0.5 ) cos ( 25 ° ) ,
t 50 % 0.93 τ 12 4 ,

Metrics