Abstract

We present a theoretical and experimental analysis of supercontinuum generation in very short lengths of high-nonlinearity photonic crystal fibers. The Raman response function for Schott SF6 glass is presented for what is believed to be the first time and used for numerical modeling of pulse propagation. Simulation and experiments are in excellent agreement and demonstrate the rapid transition to regimes of spectral complexity due to higher-order nonlinear effects.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  2. A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  3. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 26, 1356 (2001).
    [CrossRef]
  4. A. Avdokhin, S. V. Popov, and J. R. Taylor, Opt. Lett. 28, 1353 (2003).
    [CrossRef] [PubMed]
  5. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  6. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, Opt. Express 14, 4928 (2006).
    [CrossRef] [PubMed]
  7. V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
    [CrossRef]
  8. J. E. Aber, M. C. Newstien, and B. A. Garetz, J. Opt. Soc. Am. B 17, 120 (2000).
    [CrossRef]
  9. G. Agrawal, Nonlinear Fiber Optics, 3rd ed.(Academic, 2001).

2006 (2)

2004 (1)

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

2003 (2)

2001 (2)

2000 (1)

Aber, J. E.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 3rd ed.(Academic, 2001).

Avdokhin, A.

Chau, A. H. L.

Coen, S.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Efimov, A.

Garetz, B. A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

George, A. K.

Harvey, J. D.

Herrmann, J.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Joly, N. Y.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

Knight, J. C.

Kumar, V. V. R.

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

Kumar, V. V. R. K.

Leonhardt, R.

Naumov, S.

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

Newstien, M. C.

Omenetto, F. G.

Popov, S. V.

Ross, M.

Russell, P. St. J.

Sorokin, E.

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

Sorokina, I. T.

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

Taylor, A. J.

Taylor, J. R.

Wadsworth, W. J.

Wehner, M. R.

Wolchover, N. A.

Appl. Phys. B (1)

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. R. Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science (1)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Other (1)

G. Agrawal, Nonlinear Fiber Optics, 3rd ed.(Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Raman response functions for silica and SF6 glass. The more rapid oscillation of the SF6 curve is due to a peak in the Raman spectrum at 1000 cm 1 .

Fig. 2
Fig. 2

Comparison of numerical simulations [(a) and (b)] and experimental results [(c) and (d)] for propagation of 110 fs pulses at 1550 nm in a 5.7 mm segment [(a) and (c)] and 17 mm segment [(b) and (d)] of SF6 PCF. Propagation in the shorter piece is Kerr dominated and spectrally smooth, whereas significant spectral structure appears in the longer segment. Characteristic spectral features can be matched in (b) and (d) as indicated by the arrows. The experimental trace shows some smoothing due to averaging from the optical spectrum analyzer.

Fig. 3
Fig. 3

Comparison of experimentally measured (top) and numerically calculated (bottom) spectral evolution as a function of average power in the PCF for a propagation length of 17 mm , capturing the transition from the Kerr dominated regime into the higher-order nonlinear regime visible between 35 and 40 mW .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i A z + i α 2 A β 2 2 2 A t 2 i β 3 6 3 A t 3 + γ A 0 R ( t t ) A 2 ( t ) d t = 0 ,

Metrics