Abstract

We propose a scheme to increase the delay-time–bandwidth product for a periodic microring resonator structure in slowing or stopping light. The idea is based on the existence of a low group velocity and low dispersion region close to a band edge near a ring resonance. By putting different frequency components on resonance with different rings, one can drastically slow down the light without inducing large additional dispersive distortion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, J. Opt. Soc. Am. B 21, 1818 (2004).
    [CrossRef]
  2. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
    [CrossRef]
  3. M. F. Yanik and S. H. Fan, Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  4. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, J. Opt. Soc. Am. B 22, 2144 (2005).
    [CrossRef]
  5. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. H. Fan, Opt. Lett. 31, 1985 (2006).
    [CrossRef] [PubMed]
  6. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, Opt. Lett. 30, 2790 (2005).
    [CrossRef] [PubMed]
  7. For instance, quantum-well Bragg structures, which are described by the same type of equations.
  8. Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
    [CrossRef] [PubMed]
  9. R. Sapienza, P. Costantino, and D. Wiersma, Phys. Rev. Lett. 91, 263902 (2003).
    [CrossRef]
  10. C. M. de Sterke, K. R. Jackson, and B. D. Robert, J. Opt. Soc. Am. B 8, 403 (1991).
    [CrossRef]
  11. Z. S. Yang, P. Chak, and J. E. Sipe, "Universal anti-reflection blocks for 4-port periodic microresonator structures," submitted to Appl. Phys. Lett.

2006

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. H. Fan, Opt. Lett. 31, 1985 (2006).
[CrossRef] [PubMed]

2005

2004

2003

R. Sapienza, P. Costantino, and D. Wiersma, Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

2001

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

1991

Binder, R.

Boyd, R. W.

Chak, P.

J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, J. Opt. Soc. Am. B 21, 1818 (2004).
[CrossRef]

Z. S. Yang, P. Chak, and J. E. Sipe, "Universal anti-reflection blocks for 4-port periodic microresonator structures," submitted to Appl. Phys. Lett.

Costantino, P.

R. Sapienza, P. Costantino, and D. Wiersma, Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

de Sterke, C. M.

Deng, Z. J.

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Fan, S. H.

Heebner, J. E.

Hemmer, P.

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

Jackson, K. R.

Kwong, N. H.

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Ooi, C. H. R.

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

Pereira, S.

Povinelli, M. L.

Qing, D. K.

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

Robert, B. D.

Sandhu, S.

Sapienza, R.

R. Sapienza, P. Costantino, and D. Wiersma, Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

Scully, M. O.

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

Sipe, J. E.

J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, J. Opt. Soc. Am. B 21, 1818 (2004).
[CrossRef]

Z. S. Yang, P. Chak, and J. E. Sipe, "Universal anti-reflection blocks for 4-port periodic microresonator structures," submitted to Appl. Phys. Lett.

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

Smirl, A. L.

Wiersma, D.

R. Sapienza, P. Costantino, and D. Wiersma, Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

Yang, Z. S.

Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, Opt. Lett. 30, 2790 (2005).
[CrossRef] [PubMed]

Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, J. Opt. Soc. Am. B 22, 2144 (2005).
[CrossRef]

Z. S. Yang, P. Chak, and J. E. Sipe, "Universal anti-reflection blocks for 4-port periodic microresonator structures," submitted to Appl. Phys. Lett.

Yanik, M. F.

Zubairy, M. S.

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. Lett.

M. F. Yanik and S. H. Fan, Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006).
[CrossRef] [PubMed]

R. Sapienza, P. Costantino, and D. Wiersma, Phys. Rev. Lett. 91, 263902 (2003).
[CrossRef]

Other

Z. S. Yang, P. Chak, and J. E. Sipe, "Universal anti-reflection blocks for 4-port periodic microresonator structures," submitted to Appl. Phys. Lett.

For instance, quantum-well Bragg structures, which are described by the same type of equations.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of (a) a SCISSOR unit, (b) a finite periodic SCISSOR sequence with AR blocks at both ends, (c) an inclined SCISSOR structure with varying ring resonances.

Fig. 2
Fig. 2

Photonic band structure of the periodic SCISSOR structure around 100 ν B , with the crosses indicating the K components of the incident pulse.

Fig. 3
Fig. 3

Time dependence of pulse intensities: the input (dotted curve), transmitted in the 10-unit-cell uniformly periodic system (dashed curve), reflected in the 10-unit-cell inclined system (solid curve), and transmitted in the 90-unit-cell uniformly periodic system (dashed–dotted curve).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( E 3 up low E 2 up low ) = ( σ i κ i κ σ ) ( E 4 up low E 1 up low ) ,
( E R + E R ) = M ( E L + E L ) , M = ( α β β * α * ) ,
α = { exp [ i π ( ν ν B ν ν r ) ] } [ exp ( 2 i π ν ν r ) σ 2 ] 2 i σ sin ( π ν ν r ) ]

Metrics