Abstract

We propose a variant of the heterodyne holography scheme that combines the properties of off-axis and phase-shifting holography. This scheme makes it possible to filter off numerically the zero-order image alias and the technical noise of the reference. It is then possible to record and reconstruct holographic images at an extremely low signal level. We show experimentally that the sensitivity of the method is limited only by the quantum nature of photons.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  2. D. Gabor, Proc. R. Soc. London, Ser. A 197, 454 (1949).
    [CrossRef]
  3. J. W. Goodmann and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
    [CrossRef]
  4. E. N. Leith, J. Upatnieks, and K. A. Haines, J. Opt. Soc. Am. 55, 981 (1965).
    [CrossRef]
  5. U. Schnars and W. Jüptner, Appl. Opt. 33, 179 (l994).
    [CrossRef]
  6. U. Schnars, J. Opt. Soc. Am. A 11, 2011 (1994).
    [CrossRef]
  7. T. M. Kreis, W. P. O. Juptner, and J. Geldmacher, Proc. SPIE 3478, 45 (1988).
  8. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
    [CrossRef]
  9. I. Yamaguchi and T. Zhang, Opt. Lett. 18, 31 (1997).
  10. F. LeClerc, L. Collot, and M. Gross, Opt. Lett. 25, 716 (2000).
    [CrossRef]
  11. F. LeClerc, L. Collot, and M. Gross, Opt. Lett. 26, (2001).
    [CrossRef]
  12. T. Kreis, in Interferometry in Speckle Light, P.Jacquot and J.-M.Fournier, eds. (Springer-Verlag, 2000), pp. 205-212.
    [CrossRef]
  13. M. Gross, P. Goy, and M. Al-Koussa, Opt. Lett. 28, 2482 (2003).
    [CrossRef] [PubMed]
  14. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, Opt. Lett. 30, 1357 (2005).
    [CrossRef] [PubMed]

2005

2003

2002

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

2001

F. LeClerc, L. Collot, and M. Gross, Opt. Lett. 26, (2001).
[CrossRef]

2000

1997

1994

1967

J. W. Goodmann and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

1965

1949

D. Gabor, Proc. R. Soc. London, Ser. A 197, 454 (1949).
[CrossRef]

Al-Koussa, M.

Atlan, M.

Boccara, A. C.

Collot, L.

F. LeClerc, L. Collot, and M. Gross, Opt. Lett. 26, (2001).
[CrossRef]

F. LeClerc, L. Collot, and M. Gross, Opt. Lett. 25, 716 (2000).
[CrossRef]

Cuche, E.

Depeursinge, C.

Dunn, A. K.

Forget, B. C.

Gabor, D.

D. Gabor, Proc. R. Soc. London, Ser. A 197, 454 (1949).
[CrossRef]

Geldmacher, J.

T. M. Kreis, W. P. O. Juptner, and J. Geldmacher, Proc. SPIE 3478, 45 (1988).

Goodmann, J. W.

J. W. Goodmann and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Goy, P.

Gross, M.

Haines, K. A.

Juptner, W. P. O.

T. M. Kreis, W. P. O. Juptner, and J. Geldmacher, Proc. SPIE 3478, 45 (1988).

Jüptner, W.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Kreis, T.

T. Kreis, in Interferometry in Speckle Light, P.Jacquot and J.-M.Fournier, eds. (Springer-Verlag, 2000), pp. 205-212.
[CrossRef]

Kreis, T. M.

T. M. Kreis, W. P. O. Juptner, and J. Geldmacher, Proc. SPIE 3478, 45 (1988).

Lawrence, R. W.

J. W. Goodmann and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

LeClerc, F.

F. LeClerc, L. Collot, and M. Gross, Opt. Lett. 26, (2001).
[CrossRef]

F. LeClerc, L. Collot, and M. Gross, Opt. Lett. 25, 716 (2000).
[CrossRef]

Leith, E. N.

Marquet, P.

Ramaz, F.

Schnars, U.

Upatnieks, J.

Yamaguchi, I.

Zhang, T.

Appl. Opt.

Appl. Phys. Lett.

J. W. Goodmann and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Meas. Sci. Technol.

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Opt. Lett.

Proc. R. Soc. London, Ser. A

D. Gabor, Proc. R. Soc. London, Ser. A 197, 454 (1949).
[CrossRef]

Other

T. Kreis, in Interferometry in Speckle Light, P.Jacquot and J.-M.Fournier, eds. (Springer-Verlag, 2000), pp. 205-212.
[CrossRef]

T. M. Kreis, W. P. O. Juptner, and J. Geldmacher, Proc. SPIE 3478, 45 (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

USAF target digital holography setup: L, main laser; BS, beam splitter; AOM1 and AOM2, acousto-optic modulators; BE, beam expander; M, mirror; A, light attenuator; USAF, transmission target; CCD, CCD camera.

Fig. 2
Fig. 2

Reconstruction of the USAF target image. (a) Intensity image of the CCD complex hologram H ( x , y , 0 ) 2 in linear gray scale. (b) Intensity image of the k-space hologram H ̃ ( k x , k y , 0 ) 2 in logarithmic gray scale. (c) Intensity image of the truncated k-space hologram in logarithmic gray scale. (d) USAF target reconstructed image, i.e., intensity image of the real-space hologram in the object plane H ( x , y , D ) 2 in linear gray scale. Images are [(a), (b)] 1024 × 1024 or [(c), (d)] in 256 × 256 pixels.

Fig. 3
Fig. 3

Reconstructed image of a USAF target in transmission with low light illumination. Images are obtained with a signal field that corresponds to (a) 2.8 × 10 7 , (b) 2.8 × 10 5 , (c) 4 × 10 4 , and (d) 6000 photoelectrons for all 12 CCD images ( 256 × 256 pixels displayed in linear gray scale).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H = m = 0 11 ( j ) m I m ,
H ̃ ( k x , k y , 0 ) = FFT [ H ( x , y , 0 ) ] .
H ̃ ( k x , k y , z ) = K ̃ ( k x , k y , z ) H ̃ ( k x , k y , z ) ,
K ̃ ( k x , k y , z ) = e j z ( k x 2 + k y 2 ) k ,
H ( x , y , z ) = FFT 1 [ H ̃ ( k x , k y , z ) ] .

Metrics