Abstract

When a pulse superposed on a cw background propagates through an erbium-doped fiber amplifier with a negative group velocity, either pulse broadening or pulse compression can be observed. These effects can be explained in terms of two competing mechanisms: gain recovery and pulse spectrum broadening. The distortion of the pulse shape caused by these effects depends on input pulse width, pump power, and background-to-pulse power ratio. With the proper choice of these three parameters, we can obtain significant pulse advancement with minimal pulse distortion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Opt. Photon. News 17(4), 18 (2006).
    [CrossRef]
  2. R. W. Boyd and D. J. Gauthier, Nature 441, 701 (2006).
    [CrossRef] [PubMed]
  3. D. Eliyahu, R. A. Salvatore, J. Rosen, A. Yariv, and J. Drolet, Opt. Lett. 20, 1412 (1995).
    [CrossRef] [PubMed]
  4. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, Opt. Express 13, 9995 (2005).
    [CrossRef] [PubMed]
  5. K. Y. Song, M. Gonzalez Herraez, and L. Thevenaz, Opt. Express 13, 9758 (2005).
    [CrossRef] [PubMed]
  6. R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, "Maximizing the opening of eye diagrams for slow-light systems" (submitted to J. Lightwave Technol.).
  7. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
    [CrossRef] [PubMed]
  8. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
    [CrossRef]
  9. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
    [CrossRef]
  10. H. Cao, A. Dogariu, and L. J. Wang, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
    [CrossRef]
  11. P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, Proc. SPIE 1789, 66 (1992).
    [CrossRef]
  12. M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, J. Phys. Condens. Matter 18, 3117 (2006).
    [CrossRef]

2006 (5)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Opt. Photon. News 17(4), 18 (2006).
[CrossRef]

R. W. Boyd and D. J. Gauthier, Nature 441, 701 (2006).
[CrossRef] [PubMed]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, J. Phys. Condens. Matter 18, 3117 (2006).
[CrossRef]

2005 (2)

2003 (1)

H. Cao, A. Dogariu, and L. J. Wang, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

1995 (1)

1992 (1)

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, Proc. SPIE 1789, 66 (1992).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Barsi, C.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Bigelow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, J. Phys. Condens. Matter 18, 3117 (2006).
[CrossRef]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, J. Phys. Condens. Matter 18, 3117 (2006).
[CrossRef]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Opt. Photon. News 17(4), 18 (2006).
[CrossRef]

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

R. W. Boyd and D. J. Gauthier, Nature 441, 701 (2006).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, "Maximizing the opening of eye diagrams for slow-light systems" (submitted to J. Lightwave Technol.).

Cao, H.

H. Cao, A. Dogariu, and L. J. Wang, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

Dawes, A. M. C.

Digonnet, M. J. F.

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, Proc. SPIE 1789, 66 (1992).
[CrossRef]

Dogariu, A.

H. Cao, A. Dogariu, and L. J. Wang, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

Drolet, J.

Eliyahu, D.

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Opt. Photon. News 17(4), 18 (2006).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Opt. Photon. News 17(4), 18 (2006).
[CrossRef]

R. W. Boyd and D. J. Gauthier, Nature 441, 701 (2006).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, Opt. Express 13, 9995 (2005).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, "Maximizing the opening of eye diagrams for slow-light systems" (submitted to J. Lightwave Technol.).

Gehring, G. M.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Herraez, M. Gonzalez

Jarabo, S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

Kostinski, N.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, J. Phys. Condens. Matter 18, 3117 (2006).
[CrossRef]

Neifeld, M. A.

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, Opt. Express 13, 9995 (2005).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, "Maximizing the opening of eye diagrams for slow-light systems" (submitted to J. Lightwave Technol.).

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Pant, R.

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, "Maximizing the opening of eye diagrams for slow-light systems" (submitted to J. Lightwave Technol.).

Rosen, J.

Salvatore, R. A.

Schweinsberg, A.

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

Shaw, H. J.

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, Proc. SPIE 1789, 66 (1992).
[CrossRef]

Shi, Z.

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, "Maximizing the opening of eye diagrams for slow-light systems" (submitted to J. Lightwave Technol.).

Shin, H.

M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, J. Phys. Condens. Matter 18, 3117 (2006).
[CrossRef]

Song, K. Y.

Stenner, M. D.

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, Opt. Express 13, 9995 (2005).
[CrossRef] [PubMed]

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, "Maximizing the opening of eye diagrams for slow-light systems" (submitted to J. Lightwave Technol.).

Thevenaz, L.

Wagener, J. L.

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, Proc. SPIE 1789, 66 (1992).
[CrossRef]

Wang, L. J.

H. Cao, A. Dogariu, and L. J. Wang, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

Wysocki, P. F.

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, Proc. SPIE 1789, 66 (1992).
[CrossRef]

Yariv, A.

Zhu, Z.

Europhys. Lett. (1)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Cao, A. Dogariu, and L. J. Wang, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

J. Phys. Condens. Matter (1)

M. S. Bigelow, N. N. Lepeshkin, H. Shin, and R. W. Boyd, J. Phys. Condens. Matter 18, 3117 (2006).
[CrossRef]

Nature (1)

R. W. Boyd and D. J. Gauthier, Nature 441, 701 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Photon. News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Opt. Photon. News 17(4), 18 (2006).
[CrossRef]

Proc. SPIE (1)

P. F. Wysocki, J. L. Wagener, M. J. F. Digonnet, and H. J. Shaw, Proc. SPIE 1789, 66 (1992).
[CrossRef]

Science (1)

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Other (1)

R. Pant, M. D. Stenner, M. A. Neifeld, Z. Shi, R. W. Boyd, and D. J. Gauthier, "Maximizing the opening of eye diagrams for slow-light systems" (submitted to J. Lightwave Technol.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The signal beam is sent through an isolator and coupled into a fiber. The pump beam at 980 nm and the signal beam at 1550 nm are combined at a WDM and copropagate through the EDFA. P pulse and P bg represent the power of the pulse and the background, respectively.

Fig. 2
Fig. 2

(a) Experimentally measured (symbols) and theoretically predicted (curves) pulse-width ratio versus background-to-pulse power ratio for different pulse widths. The horizontal line at the pulse-width ratio of 1 represents no pulse-width distortion. Inset: experimentally measured input (dashed curve) and output (solid curve) pulse waveforms illustrate distortion accompanied by (1) broadening, (2) no pulse-width distortion, and (3) compression. (b) Experimentally measured (symbols) and averaged (lines) fractional advancement versus background-to-pulse power ratio.

Fig. 3
Fig. 3

Experimentally measured (symbols) and theoretically predicted (curves) pulse-shape distortion versus background-to-pulse power ratio for different pulse widths. Inset: experimentally measured input (dashed curve) and output (solid curve) pulse waveforms of 10 ms pulse width at power ratios of (1) 0 and (2) 1.2, respectively.

Fig. 4
Fig. 4

Experimentally measured (symbols) and theoretically predicted (curves) pulse distortion versus background-to-pulse power ratio for different pump powers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = ( + E ( t + Δ t ) 2 E ( t ) 2 d t + E ( t + Δ t ) 2 d t ) 1 2 ( + E ( t + δ t ) 2 E ( t ) 2 d t + E ( t + δ t ) 2 d t ) 1 2 ,

Metrics