Abstract

The intensity of a random optical field consists of bright speckle spots (maxima) separated from dark areas (minima and optical vortices) by saddle points. We show that hidden in this complicated landscape are umbilic points—singular points at which the eigenvalues Λ± of the Hessian matrix that measure the curvature of the landscape become degenerate. Although not observed previously in random optical fields, umbilic points are the most numerous of all special points, outnumbering maxima, minima, saddle points, and vortices. We show experimentally that the directions of principal curvature, the eigenvectors Ψ±, rotate about intensity umbilic points with positive or negative half-integer winding number, in accord with theory, and that Λ+ and Λ generate a double cone known as a diabolo. At optical vortices the curvature of the amplitude is singular, and we show from both theory and experiment that for this landscape Ψ± rotate about vortex centers with a positive integer winding number. Diabolos can be classified as elliptic or hyperbolic, and we present initial results for the measured fractions of these two different types of umbilic diabolos.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription