Abstract

When light is transmitted through optically inhomogeneous and anisotropic media the spatial distribution of light can be modified according to its input polarization state. A complete analysis of this process, based on the paraxial approximation, is presented, and we show how it can be exploited to produce a spin-controlled change in the orbital angular momentum of light beams propagating in patterned space-variant optical axis phase plates. We also unveil a new effect: the development of a strong modulation in the angular momentum change upon variation of the optical path through the phase plates.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light propagation in a birefringent plate with topological charge

Ebrahim Karimi, Bruno Piccirillo, Lorenzo Marrucci, and Enrico Santamato
Opt. Lett. 34(8) 1225-1227 (2009)

Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett
Opt. Lett. 22(1) 52-54 (1997)

Electrically controlled transfer of spin angular momentum of light in an optically active medium

Lixiang Chen, Guoliang Zheng, Jie Xu, Bingzhi Zhang, and Weilong She
Opt. Lett. 31(23) 3474-3476 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription