Abstract

By using a high-precision FM Brillouin spectrometer with the spectral resolution of 20kHz, we have succeeded in determining the Brillouin linewidth of single-crystal LiTaO3. The large directional anisotropy for the attenuation rate of the longitudinal elastic wave and the extremely narrow Brillouin linewidth of 1.60MHz have been observed at room temperature.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Oliver and G. A. Slack, J. Appl. Phys. 37, 1542 (1966).
    [CrossRef]
  2. A. B. Smith, R. W. Kedzie, D. H. McMahon, and M. Kestigian, J. Appl. Phys. 40, 2687 (1969).
    [CrossRef]
  3. N. Uchida and N. Niizeki, Proc. IEEE 61, 1073 (1973).
    [CrossRef]
  4. G. W. Faris, L. E. Jusinski, M. J. Dyer, W. K. Bishel, and A. P. Hickman, Opt. Lett. 15, 703 (1990).
    [CrossRef] [PubMed]
  5. G. W. Faris, M. Gerken, C. Jiraushek, D. Hogan, and Y. Chen, Opt. Lett. 26, 1894 (2001).
    [CrossRef]
  6. S. Ohno, T. Sonehara, E. Tatsu, A. Koreeda, and S. Saikan, Rev. Sci. Instrum. 77, 123104 (2006).
    [CrossRef]
  7. D. Hieman, D. S. Hamilton, and R. W. Hellwarth, Phys. Rev. B 19, 6583 (1979).
    [CrossRef]

2006

S. Ohno, T. Sonehara, E. Tatsu, A. Koreeda, and S. Saikan, Rev. Sci. Instrum. 77, 123104 (2006).
[CrossRef]

2001

1990

1979

D. Hieman, D. S. Hamilton, and R. W. Hellwarth, Phys. Rev. B 19, 6583 (1979).
[CrossRef]

1973

N. Uchida and N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

1969

A. B. Smith, R. W. Kedzie, D. H. McMahon, and M. Kestigian, J. Appl. Phys. 40, 2687 (1969).
[CrossRef]

1966

D. W. Oliver and G. A. Slack, J. Appl. Phys. 37, 1542 (1966).
[CrossRef]

Bishel, W. K.

Chen, Y.

Dyer, M. J.

Faris, G. W.

Gerken, M.

Hamilton, D. S.

D. Hieman, D. S. Hamilton, and R. W. Hellwarth, Phys. Rev. B 19, 6583 (1979).
[CrossRef]

Hellwarth, R. W.

D. Hieman, D. S. Hamilton, and R. W. Hellwarth, Phys. Rev. B 19, 6583 (1979).
[CrossRef]

Hickman, A. P.

Hieman, D.

D. Hieman, D. S. Hamilton, and R. W. Hellwarth, Phys. Rev. B 19, 6583 (1979).
[CrossRef]

Hogan, D.

Jiraushek, C.

Jusinski, L. E.

Kedzie, R. W.

A. B. Smith, R. W. Kedzie, D. H. McMahon, and M. Kestigian, J. Appl. Phys. 40, 2687 (1969).
[CrossRef]

Kestigian, M.

A. B. Smith, R. W. Kedzie, D. H. McMahon, and M. Kestigian, J. Appl. Phys. 40, 2687 (1969).
[CrossRef]

Koreeda, A.

S. Ohno, T. Sonehara, E. Tatsu, A. Koreeda, and S. Saikan, Rev. Sci. Instrum. 77, 123104 (2006).
[CrossRef]

McMahon, D. H.

A. B. Smith, R. W. Kedzie, D. H. McMahon, and M. Kestigian, J. Appl. Phys. 40, 2687 (1969).
[CrossRef]

Niizeki, N.

N. Uchida and N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Ohno, S.

S. Ohno, T. Sonehara, E. Tatsu, A. Koreeda, and S. Saikan, Rev. Sci. Instrum. 77, 123104 (2006).
[CrossRef]

Oliver, D. W.

D. W. Oliver and G. A. Slack, J. Appl. Phys. 37, 1542 (1966).
[CrossRef]

Saikan, S.

S. Ohno, T. Sonehara, E. Tatsu, A. Koreeda, and S. Saikan, Rev. Sci. Instrum. 77, 123104 (2006).
[CrossRef]

Slack, G. A.

D. W. Oliver and G. A. Slack, J. Appl. Phys. 37, 1542 (1966).
[CrossRef]

Smith, A. B.

A. B. Smith, R. W. Kedzie, D. H. McMahon, and M. Kestigian, J. Appl. Phys. 40, 2687 (1969).
[CrossRef]

Sonehara, T.

S. Ohno, T. Sonehara, E. Tatsu, A. Koreeda, and S. Saikan, Rev. Sci. Instrum. 77, 123104 (2006).
[CrossRef]

Tatsu, E.

S. Ohno, T. Sonehara, E. Tatsu, A. Koreeda, and S. Saikan, Rev. Sci. Instrum. 77, 123104 (2006).
[CrossRef]

Uchida, N.

N. Uchida and N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

J. Appl. Phys.

D. W. Oliver and G. A. Slack, J. Appl. Phys. 37, 1542 (1966).
[CrossRef]

A. B. Smith, R. W. Kedzie, D. H. McMahon, and M. Kestigian, J. Appl. Phys. 40, 2687 (1969).
[CrossRef]

Opt. Lett.

Phys. Rev. B

D. Hieman, D. S. Hamilton, and R. W. Hellwarth, Phys. Rev. B 19, 6583 (1979).
[CrossRef]

Proc. IEEE

N. Uchida and N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Rev. Sci. Instrum.

S. Ohno, T. Sonehara, E. Tatsu, A. Koreeda, and S. Saikan, Rev. Sci. Instrum. 77, 123104 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for FM-stimulated Brillouin spectroscopy. F.P. denotes confocal Fabry–Perot. The electro-optical modulator (E.O.M) is driven at 80 MHz . Mirrors M 1 and M 2 have reflectivity of 98% and 50%, respectively, at wavelength 1.06 μ m . Other mirrors have a reflectivity of 100%.

Fig. 2
Fig. 2

FM Brillouin spectrum for the longitudinal elastic wave propagating along the x direction. The elasto-optic coefficient is p 31 .

Fig. 3
Fig. 3

FM Brillouin spectrum for the longitudinal elastic wave propagating along the y direction. The elasto-optic coefficient is p 12 .

Fig. 4
Fig. 4

FM Brillouin spectrum for the longitudinal elastic wave propagating along the z direction. The elasto-optic coefficient is p 13 .

Fig. 5
Fig. 5

FM Brillouin spectrum for the transverse elastic wave propagating along the y direction. The elasto-optic coefficient is p 56 .

Tables (1)

Tables Icon

Table 1 Brillouin Shift and Linewidth of LiTaO 3 a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( ω ) = 2 E 2 γ e 2 + γ a 2 J 1 e i ( ϕ 1 π 2 ) × [ J 0 { cos ϕ 2 ( χ 1 + χ 1 * χ 0 χ 0 * ) + i sin ϕ 2 ( χ 1 χ 1 * χ 0 + χ 0 * ) } + J 2 { cos ϕ 2 ( χ 2 + χ 2 * χ 1 χ 1 * ) + i sin ϕ 2 ( χ 2 χ 2 * χ 1 + χ 1 * ) } ] + c.c. ,
α ( dB cm ) = 8.686 π Γ v ,

Metrics