Abstract

Tunable distributed feedback lasing output based on reflection grating configuration instead of the traditional transmission one was realized from rhodamine 6G (R6G)-doped ethanol and 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl)-4H-pyran-(DCM)-doped methanol. Pure gain coupling and additional index coupling were obtained in R6G-doped ethanol and DCM-doped methanol, respectively. The tuning, which was found to be independent of the refractive index of the lasing media, went through the entire stimulated emission band for the two cases. Dual-peak lasing emission indicative of the existence of an index grating was observed in DCM-doped methanol. The interval between the two peaks increased with pump energy.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
    [CrossRef]
  2. J. Wang, G.-X. Zhang, L. Shi, D. Lo, and X.-L. Zhu, Opt. Lett. 28, 90 (2003).
    [CrossRef] [PubMed]
  3. F. Chen, J. Wang, C. Ye, and D. Lo, Appl. Phys. Lett. 85, 4284 (2004).
    [CrossRef]
  4. D. Gindre, A. Vesperini, J.-M. Nunzi, H. Leblond, and K. D. Dorkenoo, Opt. Lett. 31, 1657 (2006).
    [CrossRef] [PubMed]
  5. L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
    [CrossRef]
  6. D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, Appl. Phys. Lett. 84, 4893 (2004).
    [CrossRef]
  7. S.-T. Wu and A.Y.-G. Fuh, Jpn. J. Appl. Phys., Part 1 44, 977 (2005).
    [CrossRef]
  8. H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
    [CrossRef]
  9. V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
    [CrossRef]

2006 (1)

2005 (1)

S.-T. Wu and A.Y.-G. Fuh, Jpn. J. Appl. Phys., Part 1 44, 977 (2005).
[CrossRef]

2004 (2)

F. Chen, J. Wang, C. Ye, and D. Lo, Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, Appl. Phys. Lett. 84, 4893 (2004).
[CrossRef]

2003 (1)

2001 (1)

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
[CrossRef]

2000 (1)

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
[CrossRef]

1971 (1)

H. Kogelnik and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

Chen, F.

F. Chen, J. Wang, C. Ye, and D. Lo, Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

Criante, L.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, Appl. Phys. Lett. 84, 4893 (2004).
[CrossRef]

Denis, C.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
[CrossRef]

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Dorkenoo, K. D.

Dumarcher, V.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
[CrossRef]

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Fiorini, C.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
[CrossRef]

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Francescangeli, O.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, Appl. Phys. Lett. 84, 4893 (2004).
[CrossRef]

Fuh, A.Y.-G.

S.-T. Wu and A.Y.-G. Fuh, Jpn. J. Appl. Phys., Part 1 44, 977 (2005).
[CrossRef]

Gindre, D.

D. Gindre, A. Vesperini, J.-M. Nunzi, H. Leblond, and K. D. Dorkenoo, Opt. Lett. 31, 1657 (2006).
[CrossRef] [PubMed]

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
[CrossRef]

H. Kogelnik and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

Leblond, H.

Lo, D.

Lucchetta, D. E.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, Appl. Phys. Lett. 84, 4893 (2004).
[CrossRef]

Nunzi, J.-M.

D. Gindre, A. Vesperini, J.-M. Nunzi, H. Leblond, and K. D. Dorkenoo, Opt. Lett. 31, 1657 (2006).
[CrossRef] [PubMed]

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
[CrossRef]

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Raimond, P.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
[CrossRef]

Rocha, L.

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
[CrossRef]

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Sahraoui, B.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
[CrossRef]

H. Kogelnik and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

Shi, L.

Simoni, F.

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, Appl. Phys. Lett. 84, 4893 (2004).
[CrossRef]

Sobel, F.

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Vesperini, A.

Wang, J.

Wu, S.-T.

S.-T. Wu and A.Y.-G. Fuh, Jpn. J. Appl. Phys., Part 1 44, 977 (2005).
[CrossRef]

Ye, C.

F. Chen, J. Wang, C. Ye, and D. Lo, Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

Zhang, G.-X.

Zhu, X.-L.

Appl. Phys. Lett. (3)

H. Kogelnik and C. V. Shank, Appl. Phys. Lett. 18, 152 (1971).
[CrossRef]

F. Chen, J. Wang, C. Ye, and D. Lo, Appl. Phys. Lett. 85, 4284 (2004).
[CrossRef]

D. E. Lucchetta, L. Criante, O. Francescangeli, and F. Simoni, Appl. Phys. Lett. 84, 4893 (2004).
[CrossRef]

J. Appl. Phys. (2)

H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
[CrossRef]

L. Rocha, V. Dumarcher, C. Denis, P. Raimond, C. Fiorini, and J.-M. Nunzi, J. Appl. Phys. 89, 3067 (2001).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

S.-T. Wu and A.Y.-G. Fuh, Jpn. J. Appl. Phys., Part 1 44, 977 (2005).
[CrossRef]

Opt. Lett. (2)

Pure Appl. Opt. (1)

V. Dumarcher, L. Rocha, C. Denis, C. Fiorini, J.-M. Nunzi, F. Sobel, B. Sahraoui, and D. Gindre, Pure Appl. Opt. 2, 279 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used for DFB lasing based on the reflection grating geometry; the lower figure shows a side view of the dye cell pumped by two coherent beams. B.S., beam splitter; θ, intersection angle.

Fig. 2
Fig. 2

Output wavelengths as a function of the internal intersection angle θ in . Closed triangles represent DFB lasing in R6G-doped ethanol; open and closed circles represent DFB lasing in DCM-doped methanol. The solid curve is the theoretical fit based on the first-order Bragg condition. Left and right insets are the corresponding tuning spectra. Tuning spectra were not recorded under constant pump intensity.

Fig. 3
Fig. 3

Dual-peak structure of DFB lasing from DCM-doped methanol at different pump energies and constant intersection angle of 56.04 ° , which corresponds to a Bragg wavelength of 639 nm .

Fig. 4
Fig. 4

Variation of the dual-peak spectral interval as a function of the pump energy. The solid curve is a linear fit with a slope of 0.3 nm mJ .

Metrics