Abstract

We present what is, to the best of our knowledge, the first diode-pumped Nd:YAG laser emitting at 899nm and below, based on the F324I924 transition, generally used for a 946nm emission. A power of 630mW at 899nm has been achieved in cw operation and 16mW at 884nm with a fiber-coupled laser diode emitting 9W at 808nm. Intracavity second-harmonic generation in cw mode has also been demonstrated with a power of 100mW at 450nm by using a LiB3O5 nonlinear crystal.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, Opt. Lett. 31, 1869 (2006).
    [CrossRef] [PubMed]
  2. S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
    [CrossRef]
  3. S. Spiekermann and F. Laurell, in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000).
  4. C. Varona, P. Loiseau, G. Aka, and B. Ferrand, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).
  5. C. Varona, P. Loiseau, G. Aka, B. Ferrand, and V. Lupei, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).
  6. E. Herault, F. Balembois, and P. Georges, Opt. Lett. 31, 2731 (2006).
    [CrossRef] [PubMed]
  7. M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, Jr., IEEE J. Quantum Electron. 8, 501 (1972).
    [CrossRef]
  8. S. Yiou, F. Balembois, and P. Georges, J. Opt. Soc. Am. B 22, 572 (2005).
    [CrossRef]

2006 (2)

2005 (1)

2003 (1)

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

1972 (1)

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, Jr., IEEE J. Quantum Electron. 8, 501 (1972).
[CrossRef]

Aka, G.

C. Varona, P. Loiseau, G. Aka, and B. Ferrand, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

C. Varona, P. Loiseau, G. Aka, B. Ferrand, and V. Lupei, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

Balembois, F.

Birnbaum, M.

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, Jr., IEEE J. Quantum Electron. 8, 501 (1972).
[CrossRef]

Bjurshagen, S.

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

Evekull, D.

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

Ferrand, B.

C. Varona, P. Loiseau, G. Aka, B. Ferrand, and V. Lupei, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

C. Varona, P. Loiseau, G. Aka, and B. Ferrand, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

Georges, P.

Herault, E.

Koch, R.

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

Laurell, F.

S. Spiekermann and F. Laurell, in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000).

Li, E.

Li, H.

Loiseau, P.

C. Varona, P. Loiseau, G. Aka, and B. Ferrand, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

C. Varona, P. Loiseau, G. Aka, B. Ferrand, and V. Lupei, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

Lupei, V.

C. Varona, P. Loiseau, G. Aka, B. Ferrand, and V. Lupei, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

Pomphrey, P. J.

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, Jr., IEEE J. Quantum Electron. 8, 501 (1972).
[CrossRef]

Spiekermann, S.

S. Spiekermann and F. Laurell, in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000).

Tucker, A. W.

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, Jr., IEEE J. Quantum Electron. 8, 501 (1972).
[CrossRef]

Varona, C.

C. Varona, P. Loiseau, G. Aka, B. Ferrand, and V. Lupei, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

C. Varona, P. Loiseau, G. Aka, and B. Ferrand, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

Wang, P.

Yao, J.

Yiou, S.

Zhou, R.

Appl. Phys. B (1)

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Birnbaum, A. W. Tucker, and P. J. Pomphrey, Jr., IEEE J. Quantum Electron. 8, 501 (1972).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (3)

S. Spiekermann and F. Laurell, in Advanced Solid State Lasers, OSA Technical Digest Series (Optical Society of America, 2000).

C. Varona, P. Loiseau, G. Aka, and B. Ferrand, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

C. Varona, P. Loiseau, G. Aka, B. Ferrand, and V. Lupei, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectroscopy of Nd : YAG , centered on the F 3 2 4 I 9 2 4 transition.

Fig. 2
Fig. 2

Evolution of the small-signal gain versus z for different short wavelengths.

Fig. 3
Fig. 3

Experimental setup. M 1 , HT at 808 nm , HR at 899 nm ; M 2 , HR at 800 900 nm , radius = 200 mm . Case A: M 3 , flat mirror, T = 2.8 % at 899 nm and 46% at 946 nm . Case B: M 3 : concave mirror, HR 800 900 nm , radius = 100 mm .

Fig. 4
Fig. 4

Laser performances in cw operation with a 2.8% output coupler at 899 nm .

Fig. 5
Fig. 5

Evolution of the effective gain G 0 , with respect to the incident pump power.

Tables (1)

Tables Icon

Table 1 Calculated Effective Gain at Maximum Pump Power and Verification of the Oscillation Condition

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g 0 ( z ) = N σ e l σ P I P ( z ) σ a l A σ P I P ( z ) + A ,
G 0 = exp ( 0 L g 0 ( z ) d z ) .
L ( λ ) = L + T ( λ ) ,
G 0 2 ( λ ) ( 1 L ( λ ) ) > 1 .

Metrics