Abstract

We propose a novel multicore fiber design strategy for obtaining a flat in-phase supermode that optimizes utilization of the active medium inversion in the multiple cores. The spatially flat supermode is achieved by engineering the fiber so that the total mutual coupling between neighboring active cores is equal. Different designs suitable for different fabrication processes, such as stack-and-draw and drilling, are proposed. An important improvement over previous methods is the design simplicity and better tolerance to perturbations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotksy, and A. P. Napartovich, Opt. Lett. 25, 1436 (2000).
    [Crossref]
  2. E. J. Bochove, P. K. Cheo, and G. G. King, Opt. Lett. 28, 1200 (2003).
    [Crossref] [PubMed]
  3. L. Li, A. Schlzgen, S. Chen, V. L. Temyako, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 31, 2577 (2006).
    [Crossref] [PubMed]
  4. A. Mafi and J. V. Moloney, IEEE Photon. Technol. Lett. 17, 348 (2005).
    [Crossref]
  5. K. M. Gundu, M. Brio, and J. V. Moloney, Int. J. Numer. Model. 18, 351 (2005).
    [Crossref]
  6. J. R. Shewchuk, "Triangle: A two-dimensional quality mesh generator and Delaunay triangulator," http://www.cs.cmu.edu/~quake/triangle.html.

2006 (1)

2005 (2)

A. Mafi and J. V. Moloney, IEEE Photon. Technol. Lett. 17, 348 (2005).
[Crossref]

K. M. Gundu, M. Brio, and J. V. Moloney, Int. J. Numer. Model. 18, 351 (2005).
[Crossref]

2003 (1)

2000 (1)

Bochove, E. J.

Brio, M.

K. M. Gundu, M. Brio, and J. V. Moloney, Int. J. Numer. Model. 18, 351 (2005).
[Crossref]

Chen, S.

Cheo, P. K.

Fischer, D.

Glas, P.

Gundu, K. M.

K. M. Gundu, M. Brio, and J. V. Moloney, Int. J. Numer. Model. 18, 351 (2005).
[Crossref]

King, G. G.

Leitner, M.

Li, L.

Mafi, A.

A. Mafi and J. V. Moloney, IEEE Photon. Technol. Lett. 17, 348 (2005).
[Crossref]

Moloney, J. V.

L. Li, A. Schlzgen, S. Chen, V. L. Temyako, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 31, 2577 (2006).
[Crossref] [PubMed]

A. Mafi and J. V. Moloney, IEEE Photon. Technol. Lett. 17, 348 (2005).
[Crossref]

K. M. Gundu, M. Brio, and J. V. Moloney, Int. J. Numer. Model. 18, 351 (2005).
[Crossref]

Napartovich, A. P.

Peyghambarian, N.

Schlzgen, A.

Shewchuk, J. R.

J. R. Shewchuk, "Triangle: A two-dimensional quality mesh generator and Delaunay triangulator," http://www.cs.cmu.edu/~quake/triangle.html.

Temyako, V. L.

Vysotksy, D. V.

Wrage, M.

IEEE Photon. Technol. Lett. (1)

A. Mafi and J. V. Moloney, IEEE Photon. Technol. Lett. 17, 348 (2005).
[Crossref]

Int. J. Numer. Model. (1)

K. M. Gundu, M. Brio, and J. V. Moloney, Int. J. Numer. Model. 18, 351 (2005).
[Crossref]

Opt. Lett. (3)

Other (1)

J. R. Shewchuk, "Triangle: A two-dimensional quality mesh generator and Delaunay triangulator," http://www.cs.cmu.edu/~quake/triangle.html.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Left, fundamental bell-shaped supermodes of the 12-core and 24-core fibers, respectively, in the absence of the optimized glass. Right, flat supermodes when an optimized glass with appropriate refractive index is used.

Fig. 2
Fig. 2

Top, designs of SQR-12 and HEX-24 lattice fibers for obtaining flat supermodes. Bottom, representative cores of the primary (P) and secondary (S) groups. The darkest regions correspond to the active cores, the lightest regions to the cladding glass, and the semilight regions to the optimized glass whose refractive index is chosen so as to obtain the flat supermode.

Fig. 3
Fig. 3

Ranking of the in-phase supermode in terms of gain among all the supermodes (highest gain first). When the supermode is flat, for a given power it has a lower peak intensity compared with the nonflat supermode, and hence it sees higher gain.

Metrics