Abstract

A thin dielectric waveguide with a subwavelength diameter can exhibit very small transmission loss only if its diameter is greater than a threshold value, while for smaller diameters, waveguide loss grows dramatically. The threshold diameter of transition between these waveguiding and nonwaveguiding regimes is primarily determined by the wavelength of propagating light and, to a much lesser degree, by the characteristic length of the waveguide’s long-range nonuniformity. For this reason, the transmission spectrum of a thin waveguide allows immediate and quite accurate determination of its thickness. An experimental test of these facts is performed for a tapered microfiber. Good agreement with the recently developed theory of adiabatic microfiber tapers is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, Opt. Lett. 31, 870 (2006).
    [CrossRef] [PubMed]
  2. M. Sumetsky, Opt. Lett. 31, 3577 (2006).
    [CrossRef]
  3. J. Bures and R. Ghosh, J. Opt. Soc. Am. A 16, 1992 (1999).
    [CrossRef]
  4. G. Brambilla, V. Finazzi, and D. J. Richardson, Opt. Express 12, 2258 (2004).
    [CrossRef] [PubMed]
  5. A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, Electron. Lett. 41, 954 (2005).
    [CrossRef]
  6. M. Sumetsky, Opt. Lett. 31, 3420 (2006).
    [CrossRef] [PubMed]
  7. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  8. M. Sumetsky, Y. Dulashko, and A. Hale, Opt. Express 12, 3521 (2004).
    [CrossRef] [PubMed]
  9. T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
    [CrossRef]
  10. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and J. W. Nicholson, Opt. Lett. 31, 2393 (2006).
    [CrossRef] [PubMed]

2006 (4)

2005 (1)

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, Electron. Lett. 41, 954 (2005).
[CrossRef]

2004 (2)

1999 (1)

1992 (1)

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Birks, T. A.

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Brambilla, G.

Bures, J.

Clohessy, A. M.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, Electron. Lett. 41, 954 (2005).
[CrossRef]

Dulashko, Y.

Finazzi, V.

Fini, J. M.

Ghosh, R.

Hale, A.

Healy, N.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, Electron. Lett. 41, 954 (2005).
[CrossRef]

Hussey, C. D.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, Electron. Lett. 41, 954 (2005).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Murphy, D. F.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, Electron. Lett. 41, 954 (2005).
[CrossRef]

Nicholson, J. W.

Richardson, D. J.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Sumetsky, M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

MF diameter variation found with the fiber-probe scanning method of Ref. [10]. Curve 1, profile of a MF fabricated with 17 cycles of drawing; Curve 2, profile of a MF fabricated with 17 1 4 cycle of drawing; Curve 3, analytical fit of curve 1 by the function given by Eq. (2) for L = 250 μ m ; Curve 4, analytical fit of curve 3 by the function given by Eq. (2) for L = 250 μ m . Curves 3 and 4 are shifted for visibility.

Fig. 2
Fig. 2

(a) Transmission loss as a function of MF diameter determined from Eq. (4) for different wavelengths (1230, 1320, 1430, and 1530 nm ). (b) Transmission loss of a MF taper measured in the process of drawing for the same transmission wavelengths (1230, 1320, 1430, and 1530 nm ) as a function of effective MF diameter. To illustrate the reproducibility of our measurements, two measurements for each wavelength are shown. The curves are shifted along the vertical axis for visibility. The table between figures shows the number of cycles and MF diameters corresponding to the regions separated by the vertical dashed lines.

Fig. 3
Fig. 3

Transmission spectrum of a MF fabricated with 21 cycles of drawing. Inset: enlarged experimental spectrum and theoretical spectra found from Eq. (4). The parameters of theoretical spectra are shown in the figure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ = 3.31 d exp ( 0.285 λ 2 d 2 ) .
γ ( z ) = γ 1 + γ 2 γ 1 1 + exp ( z L ) .
P = k 1 2 4 L 1 2 γ 1 γ 2 γ 1 γ 2 exp [ π L k min ( γ 1 2 , γ 2 2 ) ] .
P = π 1 2 4 S 1 2 exp ( S ) , S = π L γ 2 2 k .
d ( N ) = D f N = 125 0.75 N μ m .

Metrics