Abstract

Bend-induced distortion is an important limitation in the development of fibers with very large mode areas. Simulations demonstrate that higher-order modes, recently proposed for amplification, are naturally immune to bend distortion, despite their extremely large mode areas. These numerical results compliment measured resistance to mode coupling. An interesting indirect coupling between nearly degenerate modes is shown to dominate the distortion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, Opt. Lett. 23, 52 (1998).
    [CrossRef]
  2. A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
    [CrossRef]
  3. S. Ramachandran, J. Nicholson, S. Ghalmi, M. Yan, P. Wisk, E. Monberg, and F. Dimarcello, Opt. Lett. 31, 1797 (2006).
    [CrossRef] [PubMed]
  4. J. M. Fini, Opt. Express 14, 69 (2006).
    [CrossRef] [PubMed]
  5. J. M. Fini, Opt. Lett. 31, 1963 (2006).
    [CrossRef] [PubMed]
  6. J. M. Fini and S. Ramachandran, "Bend resistance of large-mode-area higher-order-mode fibers," presented at LEOS Summer Topicals, Quebec City, Canada, July 17-19, 2006, paper MC1.3.
  7. S. Guo, F. Wu, S. Albin, H. Tai, and R. S. Rogowski, Opt. Express 12, 3341 (2004).
    [CrossRef] [PubMed]
  8. D. Marcuse, Appl. Opt. 21, 4208 (1982).
    [CrossRef] [PubMed]
  9. P. Yeh, A. Yariv, and E. Marom, J. Opt. Soc. Am. 68, 1196 (1978).
    [CrossRef]

2006 (3)

2004 (1)

2001 (1)

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

1998 (1)

1982 (1)

1978 (1)

Albin, S.

Dimarcello, F.

Fermann, M. E.

Fini, J. M.

J. M. Fini, Opt. Lett. 31, 1963 (2006).
[CrossRef] [PubMed]

J. M. Fini, Opt. Express 14, 69 (2006).
[CrossRef] [PubMed]

J. M. Fini and S. Ramachandran, "Bend resistance of large-mode-area higher-order-mode fibers," presented at LEOS Summer Topicals, Quebec City, Canada, July 17-19, 2006, paper MC1.3.

Galvanauskas, A.

A. Galvanauskas, IEEE J. Sel. Top. Quantum Electron. 7, 504 (2001).
[CrossRef]

Ghalmi, S.

Guo, S.

Marcuse, D.

Marom, E.

Monberg, E.

Nicholson, J.

Ramachandran, S.

S. Ramachandran, J. Nicholson, S. Ghalmi, M. Yan, P. Wisk, E. Monberg, and F. Dimarcello, Opt. Lett. 31, 1797 (2006).
[CrossRef] [PubMed]

J. M. Fini and S. Ramachandran, "Bend resistance of large-mode-area higher-order-mode fibers," presented at LEOS Summer Topicals, Quebec City, Canada, July 17-19, 2006, paper MC1.3.

Rogowski, R. S.

Tai, H.

Wisk, P.

Wu, F.

Yan, M.

Yariv, A.

Yeh, P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Calculated mode intensities with and without bending for (a) lower-contrast and (b) higher-contrast SIFs.

Fig. 2
Fig. 2

(Color online) Intuitive model for distortion comparing the perturbation Δ n bend to Δ n eff . HOMs (right) can have Δ n eff much larger than the fundamental mode (left).

Fig. 3
Fig. 3

Simulated field profiles (square-root intensity in linear gray scale) show the LP 03 mode with (a) no bend and (b) R bend = 12 cm . (c) The LP 07 mode (no bend) shows little distortion at (d) R bend = 12 cm and even at (e) 6 cm .

Fig. 4
Fig. 4

(Color online) (a) Simplified schematic showing the mode-coupling measurement. Measured near-field images (with enhanced contrast) show LP 03 propagating (b) with no bend and (c) after 1 m in a 12 cm radius bend. LP 07 shown for (d) no bend, (e) after 1.5 m with R bend = 12.9 cm , and (f) after 1.5 m in a tight 4.6 cm radius bend.

Fig. 5
Fig. 5

(Color online) Left, calculated effective area versus bend radius showing distortion resistance for higher-order modes. Right, measured fiber index profile.

Fig. 6
Fig. 6

(Color online) Left, effective area from full finite-difference simulations compared with full simulations projected onto three important modes (dashed-dotted curve) and coupled-mode solutions (dashed curve). Right, indirect coupling of nearly degenerate modes of like parity visualized schematically. Images show the E y field component.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n bend > Δ n eff = n core n eff ,
l = 1 N E j 2 + k 0 2 n eq 2 E l c l = k 0 2 n eff 2 c j .

Metrics