Abstract

We present an approach that can be used for transmission of information through space-limited systems or for superresolution. The spatial information is coded with different axial temporal coherence by interfering every spatial region in the input with the same region, but with a certain known delay in the longitudinal axis. Every spatial region has different delay. After mixing all of the spatial information, it is transmitted through the space-limited system. At the detection the information is passed through a similar interference setup containing certain axial delay. By temporally scanning along the longitudinal axis, each time a different spatial region that was coded with the corresponding axial delay is reconstructed. To allow coding of different spatial regions with different and small axial delays, we use a thermal light source that has very short coherence length. We include experimental validation of the presented approach.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, R. G. Dorsch, D. Mendlovic, Z. Zalevsky, and C. Ferreira, J. Opt. Soc. Am. A 13, 470 (1996).
    [CrossRef]
  2. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, in Progress in Optics (Elsevier, 1999), Vol. XL, Chap. 4.
  3. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).
  4. D. Mendlovic and A. W. Lohmann, J. Opt. Soc. Am. A 14, 558 (1997).
    [CrossRef]
  5. W. Lukosz, J. Opt. Soc. Am. 56, 1463 (1966).
    [CrossRef]
  6. A. I. Kartashev, Opt. Spectrosc. 9, 204 (1960).
  7. W. Gartner and A. W. Lohmann, Z. Phys. 174, 18 (1963).
    [CrossRef]
  8. A. Shemer, D. Mendlovic, Z. Zalevsky, J. Garcia, and P. Garcia Martinez, Appl. Opt. 38, 7245 (1999).
    [CrossRef]
  9. Z. Zalevsky, J. Garcia, P. Garcia-Martínez, and C. Ferreira, Opt. Lett. 30, 2837 (2005).
    [CrossRef] [PubMed]
  10. Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, J. Opt. A 2, 83 (2000).
    [CrossRef]
  11. A. Zlotnik, Z. Zalevsky, and E. Marom, Appl. Opt. 43, 3456 (2004).
    [CrossRef] [PubMed]
  12. D. Mendlovic, G. Shabtay, A. W. Lohmann, and N. Konforti, Opt. Lett. 23, 1084 (1998).
    [CrossRef]
  13. C. Iaconis and I. A. Walmsley, Opt. Lett. 21, 1783 (1996).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Statistical Optics (Wiley, 1985), Chap. 5, p. 158.

2005

2004

2000

Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, J. Opt. A 2, 83 (2000).
[CrossRef]

1999

1998

1997

1996

1966

1963

W. Gartner and A. W. Lohmann, Z. Phys. 174, 18 (1963).
[CrossRef]

1960

A. I. Kartashev, Opt. Spectrosc. 9, 204 (1960).

Dorsch, R. G.

Ferreira, C.

Garcia, J.

Garcia Martinez, P.

Garcia-Martínez, P.

Gartner, W.

W. Gartner and A. W. Lohmann, Z. Phys. 174, 18 (1963).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985), Chap. 5, p. 158.

Iaconis, C.

Kartashev, A. I.

A. I. Kartashev, Opt. Spectrosc. 9, 204 (1960).

Konforti, N.

Lohmann, A. W.

Lukosz, W.

Marom, E.

Mendlovic, D.

Ozaktas, H. M.

Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, J. Opt. A 2, 83 (2000).
[CrossRef]

Shabtay, G.

Shemer, A.

Walmsley, I. A.

Zalevsky, Z.

Zlotnik, A.

Appl. Opt.

J. Opt. A

Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, J. Opt. A 2, 83 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Lett.

Opt. Spectrosc.

A. I. Kartashev, Opt. Spectrosc. 9, 204 (1960).

Z. Phys.

W. Gartner and A. W. Lohmann, Z. Phys. 174, 18 (1963).
[CrossRef]

Other

Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, in Progress in Optics (Elsevier, 1999), Vol. XL, Chap. 4.

Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).

J. W. Goodman, Statistical Optics (Wiley, 1985), Chap. 5, p. 158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the setup. (b) Encoding part of the setup showing the delay plate.

Fig. 2
Fig. 2

Output of the encoding system without using the mixing system. It can be adjusted to show interferences in white light for the (a) A pattern or in the (b) B pattern by adjusting the paths in the interferometer. The contrast is enhanced with a narrowband interference filter [(c) and (d) for patterns A and B, respectively].

Fig. 3
Fig. 3

(a) Output of the system for an arbitrary path difference in the decoding interferometer. (b) Visibility extracted when the path difference is varied around the value for the A pattern. (c) Visibility extracted when the path difference is varied around the value for the B pattern. The results are obtained for green illumination.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Γ 11 ( τ ) = u ( P , t + τ ) u * ( P , t ) ,
Γ 11 ( τ c 1 ) = [ u ( P 1 , t ) + u ( P 2 , t ) ] [ u ( P 1 , t + τ c 1 ) + u ( P 2 , t + τ c 1 ) ] *
= u ( P 1 , t ) u * ( P 1 , t + τ c 1 ) ,
Γ 11 ( τ c 2 ) = [ u ( P 1 , t ) + u ( P 2 , t ) ] [ u ( P 1 , t + τ c 2 ) + u ( P 2 , t + τ c 2 ) ] *
= u ( P 2 , t ) u * ( P 2 , t + τ c 2 ) .
τ c = 2 L c ( n 1 ) c ,

Metrics