Abstract

A two-dimensional (2D) infrared spectrum of Mn2(CO)10 is measured by using chirped-pulse upconversion (CPU) of the nonlinear signal field plus a reference local oscillator. By converting the spectrum to the visible, a silicon CCD camera can be used. The method offers an attractive alternative to direct IR detection due to the technological maturity of silicon and its greater intrinsic detectivity over HgCdTe. Using CPU, we acquired a rephasing 2D IR spectrum in a few seconds.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Kim and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 102, 11185 (2005).
    [CrossRef] [PubMed]
  2. J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
    [CrossRef] [PubMed]
  3. J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
    [CrossRef] [PubMed]
  4. J. Bredenbeck, J. Helbing, and P. Hamm, J. Am. Chem. Soc. 126, 990 (2004).
    [CrossRef] [PubMed]
  5. L. Lepetit, G. Cheriaux, and M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995).
    [CrossRef]
  6. J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, Chem. Phys. Lett. 138, 110 (1987).
    [CrossRef]
  7. E. J. Heilweil, Opt. Lett. 14, 551 (1989).
    [CrossRef] [PubMed]
  8. T. P. Dougherty and E. J. Heilweil, Opt. Lett. 19, 129 (1994).
    [CrossRef] [PubMed]
  9. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, Opt. Lett. 30, 1228 (2005).
    [CrossRef] [PubMed]
  10. M. E. DeCamp and A. Tokmakoff, Opt. Lett. 30, 1818 (2005).
    [CrossRef] [PubMed]
  11. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
    [CrossRef] [PubMed]
  12. M. Khalil, N. Demirdoven, and A. Tokmakoff, J. Phys. Chem. A 107, 5258 (2003).
    [CrossRef]
  13. L. Lepetit and M. Joffre, Opt. Lett. 21, 564 (1996).
    [CrossRef] [PubMed]
  14. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]
  15. I. V. Rubtsov, K. Kumar, and R. M. Hochstrasser, Chem. Phys. Lett. 402, 439 (2005).
    [CrossRef]

2005 (6)

Y. S. Kim and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 102, 11185 (2005).
[CrossRef] [PubMed]

J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
[CrossRef] [PubMed]

I. V. Rubtsov, K. Kumar, and R. M. Hochstrasser, Chem. Phys. Lett. 402, 439 (2005).
[CrossRef]

K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, Opt. Lett. 30, 1228 (2005).
[CrossRef] [PubMed]

M. E. DeCamp and A. Tokmakoff, Opt. Lett. 30, 1818 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Bredenbeck, J. Helbing, and P. Hamm, J. Am. Chem. Soc. 126, 990 (2004).
[CrossRef] [PubMed]

2003 (2)

D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, J. Phys. Chem. A 107, 5258 (2003).
[CrossRef]

2000 (1)

1996 (1)

1995 (1)

1994 (1)

1989 (1)

1987 (1)

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, Chem. Phys. Lett. 138, 110 (1987).
[CrossRef]

Asbury, J.

J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

Belabas, N.

Bredenbeck, J.

J. Bredenbeck, J. Helbing, and P. Hamm, J. Am. Chem. Soc. 126, 990 (2004).
[CrossRef] [PubMed]

Chen, X.

J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

Cheriaux, G.

DeCamp, M. E.

Demirdoven, N.

M. Khalil, N. Demirdoven, and A. Tokmakoff, J. Phys. Chem. A 107, 5258 (2003).
[CrossRef]

Dougherty, T. P.

Eaves, J. D.

J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
[CrossRef] [PubMed]

Fayer, M. D.

J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

Fecko, C. J.

J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
[CrossRef] [PubMed]

Geissler, P. L.

J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
[CrossRef] [PubMed]

Hamm, P.

Hansen, P. A.

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, Chem. Phys. Lett. 138, 110 (1987).
[CrossRef]

Heilweil, E. J.

Helbing, J.

J. Bredenbeck, J. Helbing, and P. Hamm, J. Am. Chem. Soc. 126, 990 (2004).
[CrossRef] [PubMed]

Hochstrasser, R. M.

Y. S. Kim and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 102, 11185 (2005).
[CrossRef] [PubMed]

I. V. Rubtsov, K. Kumar, and R. M. Hochstrasser, Chem. Phys. Lett. 402, 439 (2005).
[CrossRef]

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, Chem. Phys. Lett. 138, 110 (1987).
[CrossRef]

Joffre, M.

Jonas, D. M.

Kaindl, R. A.

Khalil, M.

M. Khalil, N. Demirdoven, and A. Tokmakoff, J. Phys. Chem. A 107, 5258 (2003).
[CrossRef]

Kim, Y. S.

Y. S. Kim and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 102, 11185 (2005).
[CrossRef] [PubMed]

Kubarych, K. J.

Kumar, K.

I. V. Rubtsov, K. Kumar, and R. M. Hochstrasser, Chem. Phys. Lett. 402, 439 (2005).
[CrossRef]

Kwak, K.

J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

Lepetit, L.

Loparo, J. J.

J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
[CrossRef] [PubMed]

Moore, A.

Moore, J. N.

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, Chem. Phys. Lett. 138, 110 (1987).
[CrossRef]

Piletic, I. R.

J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

Reimann, K.

Roberts, S. T.

J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
[CrossRef] [PubMed]

Rubtsov, I. V.

I. V. Rubtsov, K. Kumar, and R. M. Hochstrasser, Chem. Phys. Lett. 402, 439 (2005).
[CrossRef]

Tokmakoff, A.

J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
[CrossRef] [PubMed]

M. E. DeCamp and A. Tokmakoff, Opt. Lett. 30, 1818 (2005).
[CrossRef] [PubMed]

M. Khalil, N. Demirdoven, and A. Tokmakoff, J. Phys. Chem. A 107, 5258 (2003).
[CrossRef]

Weiner, A. M.

Woerner, M.

Wurm, M.

Zheng, J. R.

J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

I. V. Rubtsov, K. Kumar, and R. M. Hochstrasser, Chem. Phys. Lett. 402, 439 (2005).
[CrossRef]

J. N. Moore, P. A. Hansen, and R. M. Hochstrasser, Chem. Phys. Lett. 138, 110 (1987).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Bredenbeck, J. Helbing, and P. Hamm, J. Am. Chem. Soc. 126, 990 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. A (1)

M. Khalil, N. Demirdoven, and A. Tokmakoff, J. Phys. Chem. A 107, 5258 (2003).
[CrossRef]

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (2)

J. D. Eaves, J. J. Loparo, C. J. Fecko, S. T. Roberts, A. Tokmakoff, and P. L. Geissler, Proc. Natl. Acad. Sci. U.S.A. 102, 13019 (2005).
[CrossRef] [PubMed]

Y. S. Kim and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U.S.A. 102, 11185 (2005).
[CrossRef] [PubMed]

Science (1)

J. R. Zheng, K. Kwak, J. Asbury, X. Chen, I. R. Piletic, and M. D. Fayer, Science 309, 1338 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) CPU involves mixing an IR field consisting of signal and reference with a stretched near-IR pulse. (b) Design of the dual-OPA setup that reuses the white-light seed (WLC) and two pump beams ( P 1 and P 2 ) by using beam splitters ( BS i ) and high reflectors ( HR i ) for the pump ( i = p , bandwidth > 50 nm ) and seed ( i = s , bandwidth > 100 nm ). Pump optics are transparent to the seed and OPA signal. Both outputs are sent to separate difference frequency generators (DFG1 and DFG2). (c) 2D IR pulse sequence.

Fig. 2
Fig. 2

Normalized Fourier transform IR spectrum of Mn 2 ( C O ) 10 (smooth solid, black), and DVE spectra of a 6.5 mmol L (upper jagged, blue) and 0.65 mmol L (lower jagged, red) solutions in cyclohexane.

Fig. 3
Fig. 3

Spectral interferogram of the DVE signal for the 6.5 mmol L sample. Inset, detail clearly indicating the large number of spectral points (circles) measured simultaneously with the CPU approach.

Fig. 4
Fig. 4

Absolute value rephasing 2D IR spectrum ( k s = k 1 + k 2 + k 3 ) of 6.5 mmol L Mn 2 ( C O ) 10 . The dashed line indicates the frequency diagonal ( ω 1 = ω 3 ) .

Metrics