Abstract

We report an experimental demonstration of the superprism effect in a photonic crystal slab at terahertz frequencies. For a 10% frequency variation around 0.28THz, the refraction angle at the output facet of a wedge-shaped photonic crystal varies by about 15°. A comparison with the predictions of a band structure calculation demonstrates that a three-dimensional treatment, accurately modeling the finite slab thickness and the metallic boundary conditions, is required for even a qualitative agreement with the experimental observations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. N. Malkova, D. A. Scrymgeour, and V. Gopalan, Phys. Rev. B 72, 45144 (2005).
    [CrossRef]
  3. L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
    [CrossRef]
  4. Z. P. Jian, J. Pearce, and D. M. Mittleman, Semicond. Sci. Technol. 20, S300 (2005).
    [CrossRef]
  5. Y. Zhao and D. Grischkowsky, Opt. Lett. 31, 1534 (2006).
    [CrossRef] [PubMed]
  6. Z. P. Jian, J. Pearce, and D. M. Mittleman, Opt. Lett. 29, 2067 (2004).
    [CrossRef] [PubMed]
  7. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  8. L. Pierantoni, A. Massaro, and T. Rozzi, IEEE Photon. Technol. Lett. 18, 319 (2006).
    [CrossRef]
  9. N. Jukam and M. S. Sherwin, Appl. Phys. Lett. 83, 21 (2003).
    [CrossRef]
  10. R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
    [CrossRef]
  11. J. Zhang and D. Grischkowsky, Opt. Lett. 29, 1617 (2004).
    [CrossRef] [PubMed]
  12. R. Mendis, Opt. Lett. 17, 2643 (2006).
    [CrossRef]
  13. G. Gallot, S. Jamison, R. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
    [CrossRef]
  14. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
    [CrossRef]
  15. M. Kafesaki, M. Agio, and C. M. Soukoulis, J. Opt. Soc. Am. B 19, 2232 (2002).
    [CrossRef]
  16. T. Baba, T. Matsumoto, and M. Echizen, Opt. Express 12, 4608 (2004).
    [CrossRef] [PubMed]
  17. A. L. Pokrovsky, Phys. Rev. B 69 (2004).

2006 (3)

L. Pierantoni, A. Massaro, and T. Rozzi, IEEE Photon. Technol. Lett. 18, 319 (2006).
[CrossRef]

R. Mendis, Opt. Lett. 17, 2643 (2006).
[CrossRef]

Y. Zhao and D. Grischkowsky, Opt. Lett. 31, 1534 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Malkova, D. A. Scrymgeour, and V. Gopalan, Phys. Rev. B 72, 45144 (2005).
[CrossRef]

Z. P. Jian, J. Pearce, and D. M. Mittleman, Semicond. Sci. Technol. 20, S300 (2005).
[CrossRef]

2004 (4)

2003 (1)

N. Jukam and M. S. Sherwin, Appl. Phys. Lett. 83, 21 (2003).
[CrossRef]

2002 (2)

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

M. Kafesaki, M. Agio, and C. M. Soukoulis, J. Opt. Soc. Am. B 19, 2232 (2002).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Agio, M.

Baba, T.

Echizen, M.

Fan, S. H.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Gallot, G.

Gopalan, V.

N. Malkova, D. A. Scrymgeour, and V. Gopalan, Phys. Rev. B 72, 45144 (2005).
[CrossRef]

Grischkowsky, D.

Jamison, S.

Jian, Z. P.

Z. P. Jian, J. Pearce, and D. M. Mittleman, Semicond. Sci. Technol. 20, S300 (2005).
[CrossRef]

Z. P. Jian, J. Pearce, and D. M. Mittleman, Opt. Lett. 29, 2067 (2004).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Johnson, S. G.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Jukam, N.

N. Jukam and M. S. Sherwin, Appl. Phys. Lett. 83, 21 (2003).
[CrossRef]

Kafesaki, M.

Karle, T.

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Krauss, T. F.

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Malkova, N.

N. Malkova, D. A. Scrymgeour, and V. Gopalan, Phys. Rev. B 72, 45144 (2005).
[CrossRef]

Massaro, A.

L. Pierantoni, A. Massaro, and T. Rozzi, IEEE Photon. Technol. Lett. 18, 319 (2006).
[CrossRef]

Matsumoto, T.

Mazilu, M.

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

McGowan, R.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Mendis, R.

Mittleman, D. M.

Z. P. Jian, J. Pearce, and D. M. Mittleman, Semicond. Sci. Technol. 20, S300 (2005).
[CrossRef]

Z. P. Jian, J. Pearce, and D. M. Mittleman, Opt. Lett. 29, 2067 (2004).
[CrossRef] [PubMed]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Pearce, J.

Z. P. Jian, J. Pearce, and D. M. Mittleman, Semicond. Sci. Technol. 20, S300 (2005).
[CrossRef]

Z. P. Jian, J. Pearce, and D. M. Mittleman, Opt. Lett. 29, 2067 (2004).
[CrossRef] [PubMed]

Pierantoni, L.

L. Pierantoni, A. Massaro, and T. Rozzi, IEEE Photon. Technol. Lett. 18, 319 (2006).
[CrossRef]

Pokrovsky, A. L.

A. L. Pokrovsky, Phys. Rev. B 69 (2004).

Rozzi, T.

L. Pierantoni, A. Massaro, and T. Rozzi, IEEE Photon. Technol. Lett. 18, 319 (2006).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Scrymgeour, D. A.

N. Malkova, D. A. Scrymgeour, and V. Gopalan, Phys. Rev. B 72, 45144 (2005).
[CrossRef]

Sherwin, M. S.

N. Jukam and M. S. Sherwin, Appl. Phys. Lett. 83, 21 (2003).
[CrossRef]

Soukoulis, C. M.

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Wu, L. J.

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Zhang, J.

Zhao, Y.

Appl. Phys. Lett. (1)

N. Jukam and M. S. Sherwin, Appl. Phys. Lett. 83, 21 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Pierantoni, A. Massaro, and T. Rozzi, IEEE Photon. Technol. Lett. 18, 319 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. B (4)

N. Malkova, D. A. Scrymgeour, and V. Gopalan, Phys. Rev. B 72, 45144 (2005).
[CrossRef]

S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, 10096 (1998).
[CrossRef]

A. L. Pokrovsky, Phys. Rev. B 69 (2004).

Semicond. Sci. Technol. (1)

Z. P. Jian, J. Pearce, and D. M. Mittleman, Semicond. Sci. Technol. 20, S300 (2005).
[CrossRef]

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Top, a schematic of the experimental arrangement. The input beam direction ( Γ K ) and the output normal ( Γ M ) are shown superimposed on a photograph of the photonic crystal slab. Γ M separates the region of positive and negative refraction. The triangular slab is contained between the plates of the metal waveguide. Bottom, band structure (TM polarization) of the photonic crystal slab, assuming infinite slab thickness, calculated by using the plane wave method. The superprism effect is observed in the frequency range depicted by the shaded region. The (dashed) light line is meaningful only for a three-dimensional photonic crystal, i.e., a photonic crystal slab with finite thickness. Inset, first Brillouin zone of the hexagonal lattice.

Fig. 2
Fig. 2

Portion of the intensity spectrum of the diffracted THz radiation at several different angles, showing the spectral range of interest. The angle θ R is defined in Fig. 1. The solid curves are Gaussian best fits to the data, and are shown as guides to the eye.

Fig. 3
Fig. 3

Measured angular dispersion for the TM modes (filled circles with error bars). The dashed curve shows the prediction obtained using a two-dimensional band structure calculation (see Fig. 1), while the dotted curves show the results for an air-clad two-dimensional slab with different values of the periodicity parameter c, as described in the text. The open squares depict the predicted angular dispersion obtained using a FEM simulation.

Metrics