Abstract

We present an agile optically controlled switch or modulator of terahertz (THz) radiation. The element is based on a one-dimensional photonic crystal with a GaAs wafer inserted in the middle as a defect layer. The THz electric field is enhanced in the photonic structure at the surfaces of the GaAs wafer. Excitation of the front GaAs surface by ultrashort 810nm laser pulses then leads to an efficient modulation of the THz beam even at low photocarrier concentrations (1016cm3). The response time of the element to pulsed photoexcitation is about 130ps.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
    [CrossRef]
  2. H. K. Choi, Long-Wavelength Infrared Semiconductor Lasers (Wiley, 2004).
    [CrossRef]
  3. J. Bae, H. Mazaki, T. Fujii, and K. Mizuno, in 1996 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1239.
  4. T. Nozokido, H. Minamide, and K. Mizuno, Electron. Commun. Jpn., Part 2: Electron. 80, 1 (1997).
    [CrossRef]
  5. S. Lee, Y. Kuga, and R. A. Mullen, Microwave Opt. Technol. Lett. 27, 9 (2000).
    [CrossRef]
  6. A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, Electron. Lett. 34, 1965 (1998).
    [CrossRef]
  7. L. Fekete, J. Y. Hlinka, F. Kadlec, P. Kuzel, and P. Mounaix, Opt. Lett. 30, 1992 (2005).
    [CrossRef] [PubMed]
  8. S. Biber, D. Schneiderbanger, and L.-P. Schmidt, Frequenz 59, 141 (2005).
    [CrossRef]
  9. H. Nemec, L. Duvillaret, F. Quemeneur, and P. Kuzel, J. Opt. Soc. Am. B 21, 548 (2004).
    [CrossRef]
  10. H. Nemec, P. Kuzel, F. Garet, and L. Duvillaret, Appl. Opt. 43, 1965 (2004).
    [CrossRef] [PubMed]
  11. H. Nemec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel, and M. Sebastian, Opt. Lett. 30, 549 (2005).
    [CrossRef] [PubMed]
  12. H. Nemec, F. Kadlec, C. Kadlec, P. Kuzel, and P. Jungwirth, J. Chem. Phys. 122, 104504 (2005).
    [CrossRef] [PubMed]
  13. R. Jacobsson, in Progress in Optics, E.Wolf, ed. (North-Holland, 1965), Vol. 5, Chap. 5.
  14. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).
  15. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

2005 (4)

2004 (2)

2002 (1)

B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
[CrossRef]

2000 (1)

S. Lee, Y. Kuga, and R. A. Mullen, Microwave Opt. Technol. Lett. 27, 9 (2000).
[CrossRef]

1998 (1)

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, Electron. Lett. 34, 1965 (1998).
[CrossRef]

1997 (1)

T. Nozokido, H. Minamide, and K. Mizuno, Electron. Commun. Jpn., Part 2: Electron. 80, 1 (1997).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

Bae, J.

J. Bae, H. Mazaki, T. Fujii, and K. Mizuno, in 1996 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1239.

Biber, S.

S. Biber, D. Schneiderbanger, and L.-P. Schmidt, Frequenz 59, 141 (2005).
[CrossRef]

Chelnokov, A.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, Electron. Lett. 34, 1965 (1998).
[CrossRef]

Choi, H. K.

H. K. Choi, Long-Wavelength Infrared Semiconductor Lasers (Wiley, 2004).
[CrossRef]

Coutaz, J.-L.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, Electron. Lett. 34, 1965 (1998).
[CrossRef]

Dressel, M.

Duvillaret, L.

Fekete, L.

Ferguson, B.

B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
[CrossRef]

Fujii, T.

J. Bae, H. Mazaki, T. Fujii, and K. Mizuno, in 1996 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1239.

Garet, F.

Hlinka, J. Y.

Jacobsson, R.

R. Jacobsson, in Progress in Optics, E.Wolf, ed. (North-Holland, 1965), Vol. 5, Chap. 5.

Jungwirth, P.

H. Nemec, F. Kadlec, C. Kadlec, P. Kuzel, and P. Jungwirth, J. Chem. Phys. 122, 104504 (2005).
[CrossRef] [PubMed]

Kadlec, C.

H. Nemec, F. Kadlec, C. Kadlec, P. Kuzel, and P. Jungwirth, J. Chem. Phys. 122, 104504 (2005).
[CrossRef] [PubMed]

Kadlec, F.

H. Nemec, F. Kadlec, C. Kadlec, P. Kuzel, and P. Jungwirth, J. Chem. Phys. 122, 104504 (2005).
[CrossRef] [PubMed]

L. Fekete, J. Y. Hlinka, F. Kadlec, P. Kuzel, and P. Mounaix, Opt. Lett. 30, 1992 (2005).
[CrossRef] [PubMed]

Kuga, Y.

S. Lee, Y. Kuga, and R. A. Mullen, Microwave Opt. Technol. Lett. 27, 9 (2000).
[CrossRef]

Kuzel, P.

Lee, S.

S. Lee, Y. Kuga, and R. A. Mullen, Microwave Opt. Technol. Lett. 27, 9 (2000).
[CrossRef]

Lourtioz, J.-M.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, Electron. Lett. 34, 1965 (1998).
[CrossRef]

Mazaki, H.

J. Bae, H. Mazaki, T. Fujii, and K. Mizuno, in 1996 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1239.

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

Minamide, H.

T. Nozokido, H. Minamide, and K. Mizuno, Electron. Commun. Jpn., Part 2: Electron. 80, 1 (1997).
[CrossRef]

Mizuno, K.

T. Nozokido, H. Minamide, and K. Mizuno, Electron. Commun. Jpn., Part 2: Electron. 80, 1 (1997).
[CrossRef]

J. Bae, H. Mazaki, T. Fujii, and K. Mizuno, in 1996 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1239.

Mounaix, P.

Mullen, R. A.

S. Lee, Y. Kuga, and R. A. Mullen, Microwave Opt. Technol. Lett. 27, 9 (2000).
[CrossRef]

Nemec, H.

Nozokido, T.

T. Nozokido, H. Minamide, and K. Mizuno, Electron. Commun. Jpn., Part 2: Electron. 80, 1 (1997).
[CrossRef]

Pashkin, A.

Quemeneur, F.

Rowson, S.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, Electron. Lett. 34, 1965 (1998).
[CrossRef]

Schmidt, L.-P.

S. Biber, D. Schneiderbanger, and L.-P. Schmidt, Frequenz 59, 141 (2005).
[CrossRef]

Schneiderbanger, D.

S. Biber, D. Schneiderbanger, and L.-P. Schmidt, Frequenz 59, 141 (2005).
[CrossRef]

Sebastian, M.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
[CrossRef]

Appl. Opt. (1)

Electron. Commun. Jpn., Part 2: Electron. (1)

T. Nozokido, H. Minamide, and K. Mizuno, Electron. Commun. Jpn., Part 2: Electron. 80, 1 (1997).
[CrossRef]

Electron. Lett. (1)

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, Electron. Lett. 34, 1965 (1998).
[CrossRef]

Frequenz (1)

S. Biber, D. Schneiderbanger, and L.-P. Schmidt, Frequenz 59, 141 (2005).
[CrossRef]

J. Chem. Phys. (1)

H. Nemec, F. Kadlec, C. Kadlec, P. Kuzel, and P. Jungwirth, J. Chem. Phys. 122, 104504 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

S. Lee, Y. Kuga, and R. A. Mullen, Microwave Opt. Technol. Lett. 27, 9 (2000).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).
[CrossRef]

Opt. Lett. (2)

Other (5)

H. K. Choi, Long-Wavelength Infrared Semiconductor Lasers (Wiley, 2004).
[CrossRef]

J. Bae, H. Mazaki, T. Fujii, and K. Mizuno, in 1996 IEEE MTT-S International Microwave Symposium Digest (IEEE, 1996), Vol. 3, p. 1239.

R. Jacobsson, in Progress in Optics, E.Wolf, ed. (North-Holland, 1965), Vol. 5, Chap. 5.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, 1976).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Examples of THz waveforms. (a) Reference waveform measured without PC. (Features at 10, 21, 43, and 88 ps are due to reflections on various elements in the THz beam path; the long-lasting irregular signal is related to residual water vapor.) (b) Waveform transmitted through the PC in the ground state. (c) Transient waveform obtained at 0.8 μ J cm 2 pump fluence. Inset, scheme of the structure (white, SiO 2 ; gray, MgO ; black, GaAs ).

Fig. 2
Fig. 2

Complex transmittance of the PC structure as a function of the pump pulse fluence: (a) 0 μ J cm 2 (ground state), (b) 0.8 μ J cm 2 , (c) 26 μ J cm 2 . The pump–probe delay is 5 ps . Symbols, experimental data; lines, calculation by using transfer matrix formalism. Vertical offsets of 1 ( 8 π ) and 0.5 ( 4 π ) are applied to the amplitude (phase) of the data corresponding to curves (a) and (b), respectively.

Fig. 3
Fig. 3

Ratio between the power transmission spectra of the PC in photoexcited and ground state T T 0 near the defect mode. Pump pulse fluences ( μ J cm 2 ) and free-carrier densities ( 10 16 cm 3 ) : (a) 0.4, 1.0; (b) 0.8, 2.0; (c) 2.4, 6.1; (d) 5.3, 13.5; (e) 8.0, 20; (f) 26, 66. Pump–probe delay, 5 ps . Inset, decay of the relative power transmission at 609 GHz for 0.8 μ J cm 2 versus pump–probe delay time.

Metrics