Abstract

We report the wavelength dependencies of the two- and three-photon absorption coefficients of undoped GaAs in the spectral range 1.33.5μm, as well as nonlinear refractive index n2 in the range 1.73.25μm. The data were obtained by using the single-beam Z-scan method with 100-fs-long optical pulses. Anisotropy of the three-photon absorption coefficient was observed and found to be consistent with the crystal symmetry of GaAs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
    [CrossRef]
  2. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
    [CrossRef]
  3. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, Opt. Lett. 29, 1912 (2004).
    [CrossRef] [PubMed]
  4. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, Opt. Lett. 31, 71 (2006).
    [CrossRef] [PubMed]
  5. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, and C. Lynch, Opt. Express 14, 4439 (2006).
    [CrossRef] [PubMed]
  6. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, and V. G. Kozlov, Appl. Phys. Lett. 89, 141119 (2006).
    [CrossRef]
  7. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  8. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. van Stryland, J. Opt. Soc. Am. B 9, 405 (1992).
    [CrossRef]
  9. B. S. Wherrett, J. Opt. Soc. Am. B 1, 67 (1984).
    [CrossRef]
  10. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, Opt. Lett. 18, 194 (1993).
    [CrossRef] [PubMed]
  11. J. J. Wynne, Phys. Rev. 178, 1295 (1969).
    [CrossRef]
  12. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
    [CrossRef]
  13. D. C. Hutchings and B. S. Wherrett, Phys. Rev. B 52, 8150 (1995).
    [CrossRef]

2006 (3)

2004 (1)

2001 (1)

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

1995 (1)

D. C. Hutchings and B. S. Wherrett, Phys. Rev. B 52, 8150 (1995).
[CrossRef]

1994 (1)

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

1984 (1)

1969 (1)

J. J. Wynne, Phys. Rev. 178, 1295 (1969).
[CrossRef]

Becouarn, L.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, Opt. Lett. 29, 1912 (2004).
[CrossRef] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

Bliss, D.

DeSalvo, R.

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

Eyres, L. A.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

Fejer, M. M.

Fermann, M. E.

Gerard, B.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, Opt. Lett. 29, 1912 (2004).
[CrossRef] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

Hagan, D. J.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, Opt. Lett. 18, 194 (1993).
[CrossRef] [PubMed]

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. van Stryland, J. Opt. Soc. Am. B 9, 405 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Harris, J. S.

Hurlbut, W. C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, and V. G. Kozlov, Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Hutchings, D. C.

D. C. Hutchings and B. S. Wherrett, Phys. Rev. B 52, 8150 (1995).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

Imeshev, G.

Ironside, C. N.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
[CrossRef]

Kozlov, and V. G.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, and V. G. Kozlov, Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Kuo, P. S.

Lallier, and E.

Lallier, E.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

Lee, Y.-S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, and V. G. Kozlov, Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Levi, O.

Lynch, C.

Osgood, R. M.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
[CrossRef]

Pinguet, T. J.

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, Opt. Lett. 29, 1912 (2004).
[CrossRef] [PubMed]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

Said, A. A.

Scelsi, G.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
[CrossRef]

Sheik-Bahae, M.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, Opt. Lett. 18, 194 (1993).
[CrossRef] [PubMed]

A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. van Stryland, J. Opt. Soc. Am. B 9, 405 (1992).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Simanovskii, D. M.

Stegeman, G. I.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
[CrossRef]

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

van Stryland, and E. W.

Van Stryland, E. W.

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, Opt. Lett. 18, 194 (1993).
[CrossRef] [PubMed]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Villeneuve, A.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
[CrossRef]

Vodopyanov, K. L.

Wang, J.

Wei, T. H.

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Weyburne, and D.

Wherrett, B. S.

D. C. Hutchings and B. S. Wherrett, Phys. Rev. B 52, 8150 (1995).
[CrossRef]

B. S. Wherrett, J. Opt. Soc. Am. B 1, 67 (1984).
[CrossRef]

Wynne, J. J.

J. J. Wynne, Phys. Rev. 178, 1295 (1969).
[CrossRef]

Yang, C. C.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
[CrossRef]

Young, J.

Yu, X.

Appl. Phys. Lett. (2)

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, Appl. Phys. Lett. 79, 904 (2001).
[CrossRef]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, and V. G. Kozlov, Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, IEEE J. Quantum Electron. 30, 1172 (1994).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (1)

J. J. Wynne, Phys. Rev. 178, 1295 (1969).
[CrossRef]

Phys. Rev. B (1)

D. C. Hutchings and B. S. Wherrett, Phys. Rev. B 52, 8150 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized transmission data obtained in open- and closed-aperture Z scans (a) at λ = 1.68 μ m and (b) at 2.30 μ m .

Fig. 2
Fig. 2

Experimental data and best-fit curves (solid curves) for the normalized inverse nonlinear transmission ( T 0 T ) versus incoming peak intensity at λ = 1.68 μ m (filled squares), 2.30 μ m (filled circles), and 3.47 μ m (open triangles). The inset shows the nonlinear transmission curve for 3.47 μ m at much higher intensities.

Fig. 3
Fig. 3

Experimental data and theoretical curves (solid curves) of (a) 2PA and (b) 3PA coefficients versus wavelength (polarization along [110] of GaAs). The 2PA coefficient for 1.06 μ m (∗) was taken from the literature.[8]

Fig. 4
Fig. 4

Experimental data (filled circles) and numerical fit (solid curve) of the 3PA coefficient at 2 μ m as a function of the angle θ between the optical polarization and the [001] axis.

Fig. 5
Fig. 5

Experimental data (filled circles) and theoretical curve (solid curve) of nonlinear refractive index n 2 versus wavelength (polarization along [110] in GaAs). n 2 for 10.6 μ m (∗) was obtained from the literature.[11] The inset shows results of n 2 anisotropy measurements and a numerical fit (dashed curve) to experimental data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d I ( z , r , t ) d z = α N I ( z , r , t ) N ,
T 0 T = 1 + 1 N 3 2 α N I in N 1 l ,
γ ( θ ) = a + b cos 2 θ + c cos 4 θ ,

Metrics