Abstract

Taking up to fourth-order dispersion effects into account, we show that fiber resonators become stable for a large intensity regime. The range of pump intensities leading to modulational instability becomes finite and controllable. Moreover, by computing analytically the thresholds and frequencies of these instabilities, we demonstrate the existence of a new unstable frequency at the primary threshold. This frequency exists for an arbitrary small but nonzero fourth-order dispersion coefficient. Numerical simulations for a low and flattened dispersion photonic crystal fiber resonator confirm analytical predictions and open the way to experimental implementation.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Universal power law for front propagation in all fiber resonators

S. Coulibaly, M. Taki, and M. Tlidi
Opt. Express 22(1) 483-489 (2014)

Polarization multistability and instability in a nonlinear dispersive ring cavity

M. Haelterman, S. Trillo, and S. Wabnitz
J. Opt. Soc. Am. B 11(3) 446-456 (1994)

Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers

Carlos Montes, Derradji Bahloul, Isabelle Bongrand, Jean Botineau, Gérard Cheval, Abdellatif Mamhoud, Eric Picholle, and Antonio Picozzi
J. Opt. Soc. Am. B 16(6) 932-951 (1999)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription