Abstract

A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4×4 switch matrix is designed and fabricated. A spot-size converter is integrated to reduce the insertion loss, and a new driving circuit is designed to improve the response speed. The insertion loss is less than 10dB, and the response time is 950ns.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Yang, Y. Li, F. Sun, S. Chen, and J. Yu, Opt. Commun. 250, 48 (2005).
    [CrossRef]
  2. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, Proc. SPIE 4978, 149 (2003).
    [CrossRef]
  3. N. Keil, H. H. Yao, C. Zawadzki, and B. Strebel, Electron. Lett. 31, 403 (1995).
    [CrossRef]
  4. J. Liu, J. Yu, S. Chen, and J. Xia, Opt. Commun. 245, 137 (2005).
    [CrossRef]
  5. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, IEEE Photon. Technol. Lett. 16, 2039 (2004).
    [CrossRef]
  6. Y. Li, J. Yu, and S. Chen, IEEE Photon. Technol. Lett. 17, 1641 (2005).
    [CrossRef]
  7. T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. Leppialme, Proc. SPIE 5355, 81 (2004).
    [CrossRef]
  8. T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppialme, Proc. SPIE 4987, 149 (2003).
    [CrossRef]

2005 (3)

D. Yang, Y. Li, F. Sun, S. Chen, and J. Yu, Opt. Commun. 250, 48 (2005).
[CrossRef]

J. Liu, J. Yu, S. Chen, and J. Xia, Opt. Commun. 245, 137 (2005).
[CrossRef]

Y. Li, J. Yu, and S. Chen, IEEE Photon. Technol. Lett. 17, 1641 (2005).
[CrossRef]

2004 (2)

T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. Leppialme, Proc. SPIE 5355, 81 (2004).
[CrossRef]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, IEEE Photon. Technol. Lett. 16, 2039 (2004).
[CrossRef]

2003 (2)

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, Proc. SPIE 4978, 149 (2003).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppialme, Proc. SPIE 4987, 149 (2003).
[CrossRef]

1995 (1)

N. Keil, H. H. Yao, C. Zawadzki, and B. Strebel, Electron. Lett. 31, 403 (1995).
[CrossRef]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, IEEE Photon. Technol. Lett. 16, 2039 (2004).
[CrossRef]

T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. Leppialme, Proc. SPIE 5355, 81 (2004).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppialme, Proc. SPIE 4987, 149 (2003).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, Proc. SPIE 4978, 149 (2003).
[CrossRef]

Chen, S.

D. Yang, Y. Li, F. Sun, S. Chen, and J. Yu, Opt. Commun. 250, 48 (2005).
[CrossRef]

J. Liu, J. Yu, S. Chen, and J. Xia, Opt. Commun. 245, 137 (2005).
[CrossRef]

Y. Li, J. Yu, and S. Chen, IEEE Photon. Technol. Lett. 17, 1641 (2005).
[CrossRef]

Harjanne, M.

T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. Leppialme, Proc. SPIE 5355, 81 (2004).
[CrossRef]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, IEEE Photon. Technol. Lett. 16, 2039 (2004).
[CrossRef]

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, IEEE Photon. Technol. Lett. 16, 2039 (2004).
[CrossRef]

T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. Leppialme, Proc. SPIE 5355, 81 (2004).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppialme, Proc. SPIE 4987, 149 (2003).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, Proc. SPIE 4978, 149 (2003).
[CrossRef]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, IEEE Photon. Technol. Lett. 16, 2039 (2004).
[CrossRef]

T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. Leppialme, Proc. SPIE 5355, 81 (2004).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppialme, Proc. SPIE 4987, 149 (2003).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, Proc. SPIE 4978, 149 (2003).
[CrossRef]

Keil, N.

N. Keil, H. H. Yao, C. Zawadzki, and B. Strebel, Electron. Lett. 31, 403 (1995).
[CrossRef]

Leppialme, M.

T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. Leppialme, Proc. SPIE 5355, 81 (2004).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppialme, Proc. SPIE 4987, 149 (2003).
[CrossRef]

Leppihalme, M.

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, Proc. SPIE 4978, 149 (2003).
[CrossRef]

Li, Y.

D. Yang, Y. Li, F. Sun, S. Chen, and J. Yu, Opt. Commun. 250, 48 (2005).
[CrossRef]

Y. Li, J. Yu, and S. Chen, IEEE Photon. Technol. Lett. 17, 1641 (2005).
[CrossRef]

Liu, J.

J. Liu, J. Yu, S. Chen, and J. Xia, Opt. Commun. 245, 137 (2005).
[CrossRef]

Strebel, B.

N. Keil, H. H. Yao, C. Zawadzki, and B. Strebel, Electron. Lett. 31, 403 (1995).
[CrossRef]

Sun, F.

D. Yang, Y. Li, F. Sun, S. Chen, and J. Yu, Opt. Commun. 250, 48 (2005).
[CrossRef]

Xia, J.

J. Liu, J. Yu, S. Chen, and J. Xia, Opt. Commun. 245, 137 (2005).
[CrossRef]

Yang, D.

D. Yang, Y. Li, F. Sun, S. Chen, and J. Yu, Opt. Commun. 250, 48 (2005).
[CrossRef]

Yao, H. H.

N. Keil, H. H. Yao, C. Zawadzki, and B. Strebel, Electron. Lett. 31, 403 (1995).
[CrossRef]

Yliniemi, S.

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, Proc. SPIE 4978, 149 (2003).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppialme, Proc. SPIE 4987, 149 (2003).
[CrossRef]

Yu, J.

Y. Li, J. Yu, and S. Chen, IEEE Photon. Technol. Lett. 17, 1641 (2005).
[CrossRef]

D. Yang, Y. Li, F. Sun, S. Chen, and J. Yu, Opt. Commun. 250, 48 (2005).
[CrossRef]

J. Liu, J. Yu, S. Chen, and J. Xia, Opt. Commun. 245, 137 (2005).
[CrossRef]

Zawadzki, C.

N. Keil, H. H. Yao, C. Zawadzki, and B. Strebel, Electron. Lett. 31, 403 (1995).
[CrossRef]

Electron. Lett. (1)

N. Keil, H. H. Yao, C. Zawadzki, and B. Strebel, Electron. Lett. 31, 403 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, IEEE Photon. Technol. Lett. 16, 2039 (2004).
[CrossRef]

Y. Li, J. Yu, and S. Chen, IEEE Photon. Technol. Lett. 17, 1641 (2005).
[CrossRef]

Opt. Commun. (2)

J. Liu, J. Yu, S. Chen, and J. Xia, Opt. Commun. 245, 137 (2005).
[CrossRef]

D. Yang, Y. Li, F. Sun, S. Chen, and J. Yu, Opt. Commun. 250, 48 (2005).
[CrossRef]

Proc. SPIE (3)

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppihalme, Proc. SPIE 4978, 149 (2003).
[CrossRef]

T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala, and M. Leppialme, Proc. SPIE 5355, 81 (2004).
[CrossRef]

T. Aalto, M. Kapulainen, S. Yliniemi, P. Heimala, and M. Leppialme, Proc. SPIE 4987, 149 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of 4 × 4 SOI nonblocking thermo-optic switch matrix. The dashed and dotted lines shows the light route of signals at input port 1 in the initial state and when switch cell 4 is modulated, respectively. Signals at any input ports can come out from any output ports by modulating different switch cells.

Fig. 2
Fig. 2

Structure of driving circuit for switch cell. An FPGA (EP1C6) is introduced to generate driving signals (signal 1, signal 2, and signal 3 etc.) for the driving circuits. For the 4 × 4 SOI switch matrix shown in Fig. 1, an FPGA is enough to generate 18 driving signals for the total of six driving circuits.

Fig. 3
Fig. 3

Output power of the two output ports versus heating power. The results is gained when light is input from port 1 and driving power is applied to switch cell 4.

Fig. 4
Fig. 4

Response time of switch. The control signal is a square wave, and a 10 MHz clock is used as sampling clock. The response time is measured with a 2.5 GHz detector and a high-frequency oscillograph.

Metrics