Abstract

Stimulated Brillouin scattering (SBS) in a high-delta fiber with F-doped depressed inner cladding is studied through considering the interaction of acoustic and optical modes in the fiber. It is found that the number of acoustic modes in the fiber is reduced and the frequency spacing between neighboring modes is enlarged because of the F doping. The dependences of SBS on strain and temperature are measured and compared for each acoustic mode to investigate the feasibility of discriminative sensing of strain and temperature by use of the fiber.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
    [CrossRef]
  2. K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
    [CrossRef]
  3. M. Nikles, L. Thevenaz, and P. Robert, Opt. Lett. 21, 758 (1996).
    [CrossRef] [PubMed]
  4. C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
    [CrossRef]
  5. L. Zou, X. Bao, S. Afshar, and L. Chen, Opt. Lett. 29, 1485 (2004).
    [CrossRef] [PubMed]
  6. N. Shibata, K. Okamoto, and Y. Azuna, J. Opt. Soc. Am. B 6, 1167 (1989).
    [CrossRef]
  7. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, and W. Chujo, J. Lightwave Technol. 22, 631 (2004).
    [CrossRef]
  8. W. Zou, Z. He, and K. Hotate, IEEE Photon. Technol. Lett. 18, 2487 (2006).
    [CrossRef]
  9. M. Monerie, IEEE J. Quantum Electron. 18, 532 (1982).
    [CrossRef]
  10. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Opt. Lett. 5, 273 (1980).
    [CrossRef] [PubMed]
  11. S. Afshar, V. P. Kalosha, X. Bao, and L. Chen, Opt. Lett. 30, 2685 (2005).
    [CrossRef] [PubMed]
  12. Y. Park, K. Oh, U. C. Paek, D. Y. Kim, and C. R. Kurkjian, J. Lightwave Technol. 17, 1823 (1999).
    [CrossRef]

2006 (1)

W. Zou, Z. He, and K. Hotate, IEEE Photon. Technol. Lett. 18, 2487 (2006).
[CrossRef]

2005 (1)

2004 (2)

2003 (1)

K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

2002 (1)

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

2001 (1)

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

1999 (1)

1996 (1)

1989 (1)

1982 (1)

M. Monerie, IEEE J. Quantum Electron. 18, 532 (1982).
[CrossRef]

1980 (1)

Afshar, S.

Azuna, Y.

Bao, X.

Chen, L.

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Chujo, W.

Eickhoff, W.

He, Z.

W. Zou, Z. He, and K. Hotate, IEEE Photon. Technol. Lett. 18, 2487 (2006).
[CrossRef]

Hotate, K.

W. Zou, Z. He, and K. Hotate, IEEE Photon. Technol. Lett. 18, 2487 (2006).
[CrossRef]

K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

Kalosha, V. P.

Kim, D. Y.

Koyamada, Y.

Kurkjian, C. R.

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Monerie, M.

M. Monerie, IEEE J. Quantum Electron. 18, 532 (1982).
[CrossRef]

Nakamura, S.

Nikles, M.

Oh, K.

Okamoto, K.

Ong, S. S. L.

K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

Paek, U. C.

Park, Y.

Rashleigh, S. C.

Robert, P.

Sato, S.

Shibata, N.

Sotobayashi, H.

Tanaka, M.

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

Thevenaz, L.

Ulrich, R.

Zou, L.

Zou, W.

W. Zou, Z. He, and K. Hotate, IEEE Photon. Technol. Lett. 18, 2487 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Monerie, IEEE J. Quantum Electron. 18, 532 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

K. Hotate and M. Tanaka, IEEE Photon. Technol. Lett. 14, 179 (2002).
[CrossRef]

K. Hotate and S. S. L. Ong, IEEE Photon. Technol. Lett. 15, 272 (2003).
[CrossRef]

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

W. Zou, Z. He, and K. Hotate, IEEE Photon. Technol. Lett. 18, 2487 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Modeled refractive index profile (solid curve) and the deduced acoustic velocity profile (dashed curve) in F-HDF, where Δ corresponds to the relative difference of the refractive index and V l is the acoustic velocity. The marked points show the effective phase velocities of different acoustic modes. (b) Simulated BGS in F-HDF (solid curve) and in HDF (dotted curve).

Fig. 2
Fig. 2

Experimental setup of SBS measurement. Inset A, schematic control of the temperature and the strain on the FUT. EOM, electro-optic modulator; PC, polarization controller; VOA, variable optical attenuator; DAQ, data acquisition.

Fig. 3
Fig. 3

Typical BGS measured at 25 ° C in loose state (dotted curve) compared with the simulated BGS (solid curve) in the F-HDF. Bottom axis, measured BGS; top axis, simulated BGS.

Fig. 4
Fig. 4

Measured BGS (dots) at 25 ° C in loose state and Lorenzian fittings (solid curves) for (a) first-order ( L 01 ) , (b) second-order ( L 02 ) , (c) third-order ( L 03 ) , and (d) fourth-order ( L 04 ) acoustic mode scattering.

Fig. 5
Fig. 5

Resonance frequencies of different acoustic modes as a function of (a) strain and (b) temperature. Solid lines, least-squares linear fits to data. Their slope rates, strain coefficients A i , and temperature coefficients B i are summarized in Table 1.

Tables (1)

Tables Icon

Table 1 Strain and Temperature Coefficients and Discriminative Measurement Errors for Various Acoustic Modes in F-HDF

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( Δ ν B pk i Δ ν B pk j ) = ( A i B i A j B j ) ( Δ ϵ Δ T ) ,
γ A i j γ B i j .
δ ϵ i j = 1 + γ B i j + 1 A i ( γ B i j γ A i j ) δ ν ,
δ T i j = 1 + γ A i j + 1 B i ( γ B i j γ A i j ) δ ν ,

Metrics