Abstract

Introducing nanosized pores can greatly reduce the refractive index of thin films. Thus antireflective structures can be fabricated by controlled assembly of nanoparticles to form a nanoporous layer. We report what we believe to be the first example of preparing antireflective coatings on glass slides by spin casting polymer latex. Optical transmittances at 550nm of 95.7% for a single-sided coating and 99.5% for a double-sided coating were achieved. Structure investigations with atomic force microscopy and scanning electron microscopy revealed that the antireflective coatings were highly porous and affected by spin speed and by the concentration and particle size of PMMA latex. Spin coating may be a better method for mass production, because of its convenience, low cost, and good reproducibility.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Knittl, Optics of Thin Films (Wiley, 1976), pp. 69-79.
  2. H. Hattori, Adv. Mater. (Weinheim, Ger.) 13, 51 (2001).
    [CrossRef]
  3. H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, Adv. Mater. (Weinheim, Ger.) 16, 274 (2004).
    [CrossRef]
  4. B. G. Prevo, Y. Hwang, and O. D. Velev, Chem. Mater. 17, 3642 (2005).
    [CrossRef]
  5. X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
    [CrossRef]
  6. Y. Zhao, G. Mao, and J. Wang, Opt. Lett. 30, 1885 (2005).
    [CrossRef] [PubMed]
  7. M. S. W. Vong and P. A. Sermon, Thin Solid Films 293, 185 (1997).
    [CrossRef]
  8. M. C. Bautisa and A. Morales, Sol. Energy Mater. Sol. Cells 80, 217 (2003).
    [CrossRef]
  9. N. Yamaguchi and K. Tadanaga, J. Sol-Gel Sci. Technol. 33, 117 (2005).
    [CrossRef]
  10. E. Hammarberg and A. Roos, Thin Solid Films 442, 222 (2003).
    [CrossRef]
  11. Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, Thin Solid Films 440, 180 (2003).
    [CrossRef]
  12. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
    [CrossRef] [PubMed]
  13. M. Ibn-Elhaj and M. Schadt, IEEE Photon. Technol. Lett. 410, 796 (2001).
  14. M. S. Park, Y. Lee, and J. K. Kim, Chem. Mater. 17, 3944 (2005).
    [CrossRef]
  15. M. S. Park and J. K. Kim, Langmuir 21, 111404 (2005).
  16. S. Yae, H. Tanaka, T. Kobayashi, and N. Fukumuro, Phys. Status Solidi 9, 3476 (2005).
  17. J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nat. Mater. 1, 59 (2002).
    [CrossRef]
  18. F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
    [CrossRef]
  19. H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
    [CrossRef]
  20. J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
    [CrossRef]
  21. S. R. Sandler and W. Karo, Advanced Polymer Laboratory Preparation (Academic, 1998).
  22. Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
    [CrossRef]

2005 (7)

B. G. Prevo, Y. Hwang, and O. D. Velev, Chem. Mater. 17, 3642 (2005).
[CrossRef]

X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
[CrossRef]

Y. Zhao, G. Mao, and J. Wang, Opt. Lett. 30, 1885 (2005).
[CrossRef] [PubMed]

N. Yamaguchi and K. Tadanaga, J. Sol-Gel Sci. Technol. 33, 117 (2005).
[CrossRef]

M. S. Park, Y. Lee, and J. K. Kim, Chem. Mater. 17, 3944 (2005).
[CrossRef]

M. S. Park and J. K. Kim, Langmuir 21, 111404 (2005).

S. Yae, H. Tanaka, T. Kobayashi, and N. Fukumuro, Phys. Status Solidi 9, 3476 (2005).

2004 (1)

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, Adv. Mater. (Weinheim, Ger.) 16, 274 (2004).
[CrossRef]

2003 (4)

M. C. Bautisa and A. Morales, Sol. Energy Mater. Sol. Cells 80, 217 (2003).
[CrossRef]

E. Hammarberg and A. Roos, Thin Solid Films 442, 222 (2003).
[CrossRef]

Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, Thin Solid Films 440, 180 (2003).
[CrossRef]

Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
[CrossRef]

2002 (1)

J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nat. Mater. 1, 59 (2002).
[CrossRef]

2001 (2)

M. Ibn-Elhaj and M. Schadt, IEEE Photon. Technol. Lett. 410, 796 (2001).

H. Hattori, Adv. Mater. (Weinheim, Ger.) 13, 51 (2001).
[CrossRef]

1999 (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

1997 (2)

M. S. W. Vong and P. A. Sermon, Thin Solid Films 293, 185 (1997).
[CrossRef]

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
[CrossRef]

1995 (1)

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

1982 (1)

H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
[CrossRef]

Bautisa, M. C.

M. C. Bautisa and A. Morales, Sol. Energy Mater. Sol. Cells 80, 217 (2003).
[CrossRef]

Böhmisch, M.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
[CrossRef]

Boneberg, J.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
[CrossRef]

Burmeister, F.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
[CrossRef]

Deckman, H. W.

H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
[CrossRef]

Dunsmuir, J. H.

H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
[CrossRef]

Einaga, Y.

X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
[CrossRef]

Fan, W. H.

Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, Thin Solid Films 440, 180 (2003).
[CrossRef]

Fujishima, A.

X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
[CrossRef]

Fukumuro, N.

S. Yae, H. Tanaka, T. Kobayashi, and N. Fukumuro, Phys. Status Solidi 9, 3476 (2005).

Hammarberg, E.

E. Hammarberg and A. Roos, Thin Solid Films 442, 222 (2003).
[CrossRef]

Hattori, H.

H. Hattori, Adv. Mater. (Weinheim, Ger.) 13, 51 (2001).
[CrossRef]

Hiller, J. A.

J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nat. Mater. 1, 59 (2002).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Hwang, Y.

B. G. Prevo, Y. Hwang, and O. D. Velev, Chem. Mater. 17, 3642 (2005).
[CrossRef]

Ibn-Elhaj, M.

M. Ibn-Elhaj and M. Schadt, IEEE Photon. Technol. Lett. 410, 796 (2001).

Karo, W.

S. R. Sandler and W. Karo, Advanced Polymer Laboratory Preparation (Academic, 1998).

Kim, D.-Y.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, Adv. Mater. (Weinheim, Ger.) 16, 274 (2004).
[CrossRef]

Kim, J. K.

M. S. Park, Y. Lee, and J. K. Kim, Chem. Mater. 17, 3944 (2005).
[CrossRef]

M. S. Park and J. K. Kim, Langmuir 21, 111404 (2005).

Knittl, Z.

Z. Knittl, Optics of Thin Films (Wiley, 1976), pp. 69-79.

Kobayashi, T.

S. Yae, H. Tanaka, T. Kobayashi, and N. Fukumuro, Phys. Status Solidi 9, 3476 (2005).

Koo, H. Y.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, Adv. Mater. (Weinheim, Ger.) 16, 274 (2004).
[CrossRef]

Lee, Y.

M. S. Park, Y. Lee, and J. K. Kim, Chem. Mater. 17, 3944 (2005).
[CrossRef]

Leiderer, P.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
[CrossRef]

Liu, Y.

Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
[CrossRef]

Lu, D.

Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
[CrossRef]

Mao, G.

Matthes, T.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
[CrossRef]

Mendelsohn, J. D.

J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nat. Mater. 1, 59 (2002).
[CrossRef]

Mlynek, J.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Morales, A.

M. C. Bautisa and A. Morales, Sol. Energy Mater. Sol. Cells 80, 217 (2003).
[CrossRef]

Murakami, T.

X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
[CrossRef]

Ning, N.

Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
[CrossRef]

Park, M. S.

M. S. Park and J. K. Kim, Langmuir 21, 111404 (2005).

M. S. Park, Y. Lee, and J. K. Kim, Chem. Mater. 17, 3944 (2005).
[CrossRef]

Prevo, B. G.

B. G. Prevo, Y. Hwang, and O. D. Velev, Chem. Mater. 17, 3642 (2005).
[CrossRef]

Roos, A.

E. Hammarberg and A. Roos, Thin Solid Films 442, 222 (2003).
[CrossRef]

Rubner, M. F.

J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nat. Mater. 1, 59 (2002).
[CrossRef]

Sandler, S. R.

S. R. Sandler and W. Karo, Advanced Polymer Laboratory Preparation (Academic, 1998).

Sato, O.

X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
[CrossRef]

Schadt, M.

M. Ibn-Elhaj and M. Schadt, IEEE Photon. Technol. Lett. 410, 796 (2001).

Schäffer, E.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Schäfle, C.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
[CrossRef]

Sermon, P. A.

M. S. W. Vong and P. A. Sermon, Thin Solid Films 293, 185 (1997).
[CrossRef]

Steiner, U.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Sun, Y. H.

Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, Thin Solid Films 440, 180 (2003).
[CrossRef]

Tadanaga, K.

N. Yamaguchi and K. Tadanaga, J. Sol-Gel Sci. Technol. 33, 117 (2005).
[CrossRef]

Taguch, M.

X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
[CrossRef]

Tanaka, H.

S. Yae, H. Tanaka, T. Kobayashi, and N. Fukumuro, Phys. Status Solidi 9, 3476 (2005).

Van Duyne, R. P.

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Velev, O. D.

B. G. Prevo, Y. Hwang, and O. D. Velev, Chem. Mater. 17, 3642 (2005).
[CrossRef]

Vong, M. S. W.

M. S. W. Vong and P. A. Sermon, Thin Solid Films 293, 185 (1997).
[CrossRef]

Walheim, S.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Wang, J.

Wu, D.

Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, Thin Solid Films 440, 180 (2003).
[CrossRef]

Xu, Y.

Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, Thin Solid Films 440, 180 (2003).
[CrossRef]

Yae, S.

S. Yae, H. Tanaka, T. Kobayashi, and N. Fukumuro, Phys. Status Solidi 9, 3476 (2005).

Yamaguchi, N.

N. Yamaguchi and K. Tadanaga, J. Sol-Gel Sci. Technol. 33, 117 (2005).
[CrossRef]

Yang, Z.

Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
[CrossRef]

Yi, D. K.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, Adv. Mater. (Weinheim, Ger.) 16, 274 (2004).
[CrossRef]

Yoo, S. J.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, Adv. Mater. (Weinheim, Ger.) 16, 274 (2004).
[CrossRef]

Zhang, B.

Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, Thin Solid Films 440, 180 (2003).
[CrossRef]

Zhang, X. T.

X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
[CrossRef]

Zhao, M.

Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
[CrossRef]

Zhao, Y.

Zhu, D.

Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (2)

H. Hattori, Adv. Mater. (Weinheim, Ger.) 13, 51 (2001).
[CrossRef]

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, Adv. Mater. (Weinheim, Ger.) 16, 274 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
[CrossRef]

Chem. Mater. (3)

M. S. Park, Y. Lee, and J. K. Kim, Chem. Mater. 17, 3944 (2005).
[CrossRef]

B. G. Prevo, Y. Hwang, and O. D. Velev, Chem. Mater. 17, 3642 (2005).
[CrossRef]

X. T. Zhang, O. Sato, M. Taguch, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater. 17, 696 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Ibn-Elhaj and M. Schadt, IEEE Photon. Technol. Lett. 410, 796 (2001).

J. Sol-Gel Sci. Technol. (1)

N. Yamaguchi and K. Tadanaga, J. Sol-Gel Sci. Technol. 33, 117 (2005).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
[CrossRef]

Langmuir (2)

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
[CrossRef]

M. S. Park and J. K. Kim, Langmuir 21, 111404 (2005).

Nat. Mater. (1)

J. A. Hiller, J. D. Mendelsohn, and M. F. Rubner, Nat. Mater. 1, 59 (2002).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Z. Yang, D. Zhu, D. Lu, M. Zhao, N. Ning, and Y. Liu, Opt. Quantum Electron. 35, 1133 (2003).
[CrossRef]

Phys. Status Solidi (1)

S. Yae, H. Tanaka, T. Kobayashi, and N. Fukumuro, Phys. Status Solidi 9, 3476 (2005).

Science (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, Science 283, 520 (1999).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. C. Bautisa and A. Morales, Sol. Energy Mater. Sol. Cells 80, 217 (2003).
[CrossRef]

Thin Solid Films (3)

E. Hammarberg and A. Roos, Thin Solid Films 442, 222 (2003).
[CrossRef]

Y. Xu, B. Zhang, W. H. Fan, D. Wu, and Y. H. Sun, Thin Solid Films 440, 180 (2003).
[CrossRef]

M. S. W. Vong and P. A. Sermon, Thin Solid Films 293, 185 (1997).
[CrossRef]

Other (2)

Z. Knittl, Optics of Thin Films (Wiley, 1976), pp. 69-79.

S. R. Sandler and W. Karo, Advanced Polymer Laboratory Preparation (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM image of top morphology of PMMA latex particles on glass slide. The particle layer was formed by spin coating 5 W % PMMA latex at 4000 rpm (average particle size was 110 nm in diameter).

Fig. 2
Fig. 2

AFM images of the PMMA latex particles on glass slides spin coated at A, 1000 rpm ; B, 4000 rpm ; C, 7000 rpm .

Fig. 3
Fig. 3

Transmission spectra of glass slides spin coated with PMMA latex: 1, uncoated; 2, single side coated; 3, both sides coated.

Fig. 4
Fig. 4

Optical transmission spectra of glass slide single-side coated with PMMA latex (green curve) and the calculated transmission spectra of uncoated glass slides (black curve) over 350 800 nm .

Fig. 5
Fig. 5

Transmission spectra of glass slides with PMMA latex particles spin coated at A, 1000 rpm ; B, 2000 rpm ; C, 3000 rpm ; D, 4000 rpm ; E, 7000 rpm .

Fig. 6
Fig. 6

AFM image, A, and profile, B, of the nanoparticle film. The gray line in A is the location of the AFM profile.

Metrics