Abstract

We present what are believed to be the first images obtained with a far-field high-resolution scanning surface-plasmon microscope in an aqueous medium. Measurements of V(z), the output response of the microscope, versus defocus z give a signature of the surface-plasmon propagation. V(z) is strongly conditioned by the laser beam diameter and the objective’s numerical aperture, and we show how the operating mode (in air and in water) must be chosen to maximize the surface-plasmon field and to minimize diffraction (edge) effects.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  2. R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Robert, and S. J. B. Tendle, Biomaterials 21, 1823 (2000).
    [CrossRef] [PubMed]
  3. B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
    [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  5. E. M. Yeatman, Biosens. Bioelectron. 11, 635 (1996).
    [CrossRef]
  6. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
    [CrossRef]
  7. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
    [CrossRef] [PubMed]
  8. J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, Appl. Phys. Lett. 85, 5451 (2004).
    [CrossRef]
  9. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, Opt. Lett. 25, 823 (2000).
    [CrossRef]
  10. H. K. Wickramasinghe, J. Microsc. 129, 63 (1982).
    [CrossRef]
  11. H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998).
    [CrossRef]
  12. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, Appl. Opt. 39, 6279 (2000).
    [CrossRef]

2005

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

2004

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, Appl. Phys. Lett. 85, 5451 (2004).
[CrossRef]

2000

1999

J. Homola, S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

1998

1996

E. M. Yeatman, Biosens. Bioelectron. 11, 635 (1996).
[CrossRef]

1988

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

1982

H. K. Wickramasinghe, J. Microsc. 129, 63 (1982).
[CrossRef]

Davies, M. C.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Robert, and S. J. B. Tendle, Biomaterials 21, 1823 (2000).
[CrossRef] [PubMed]

Davis, C. C.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Elliot, J.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Frazier, R. A.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Robert, and S. J. B. Tendle, Biomaterials 21, 1823 (2000).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Green, R. J.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Robert, and S. J. B. Tendle, Biomaterials 21, 1823 (2000).
[CrossRef] [PubMed]

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Kano, H.

Kawata, S.

H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998).
[CrossRef]

S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
[CrossRef]

Knoll, W.

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

Liu, S. G.

Mizuguchi, S.

Pitter, M. C.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, Appl. Phys. Lett. 85, 5451 (2004).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Robert, C. J.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Robert, and S. J. B. Tendle, Biomaterials 21, 1823 (2000).
[CrossRef] [PubMed]

Rothenhausler, B.

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

See, C. W.

Shakesheff, K. M.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Robert, and S. J. B. Tendle, Biomaterials 21, 1823 (2000).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Somekh, M. G.

Tendle, S. J. B.

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Robert, and S. J. B. Tendle, Biomaterials 21, 1823 (2000).
[CrossRef] [PubMed]

Velinov, T. S.

Wickramasinghe, H. K.

H. K. Wickramasinghe, J. Microsc. 129, 63 (1982).
[CrossRef]

Yeatman, E. M.

E. M. Yeatman, Biosens. Bioelectron. 11, 635 (1996).
[CrossRef]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Zayats, A. V.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, Appl. Phys. Lett. 85, 5451 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, Appl. Phys. Lett. 85, 5451 (2004).
[CrossRef]

Biomaterials

R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Robert, and S. J. B. Tendle, Biomaterials 21, 1823 (2000).
[CrossRef] [PubMed]

Biosens. Bioelectron.

E. M. Yeatman, Biosens. Bioelectron. 11, 635 (1996).
[CrossRef]

J. Microsc.

H. K. Wickramasinghe, J. Microsc. 129, 63 (1982).
[CrossRef]

J. Opt. Soc. Am. B

Nature

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

Sens. Actuators B

J. Homola, S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Zoom of the coupling medium with the gold/dielectric layer. A Gaussian shape laser passes through a large-numerical-aperture lens and launches the SPP (depicted by ripples) for incident ray angles close to θ p . The phase retardation between rays (B) and (D) changes with lens negative defocusing z and/or the SPP coupling conditions. (b) Schematic diagram of the SSPM. The phase shift is detected by heterodyne interference between the integrated reflected beam and a reference beam.

Fig. 2
Fig. 2

SSPM images (a) SiO 2 structured gold surface in air, (b) corresponding vertical section. (c) 200 nm gold beads on a bare gold surface in water, (d) horizontal section of the gold bead framed by the square in (c).

Fig. 3
Fig. 3

V ( z ) variation with a liquid medium refractive index. (a) Experimental V ( z ) . (b) Theoretical V ( z ) . The thick curves correspond to V ( z ) W and thin curves to V ( z ) W G (see text). For clarity (a) and (b) curves are shifted vertically. (c) Plot of Δ V ( z ) in both the experimental (thick curve) and the theoretical (thin curve) cases.

Fig. 4
Fig. 4

Calculated V ( z ) for different ratios R s = w 0 a in water. The case R s = 3 corresponds to the experimental condition of Fig. 3.

Fig. 5
Fig. 5

Ratio γ of the SPP oscillation amplitude γ s p over the diffraction oscillation amplitude γ d for different values of R s (in air, filled squares; in liquid, open circles). Inset: plot of Δ V ( z * ) versus R s for position z * = 532 nm as indicated by the vertical dashed line in Fig. 3.

Metrics