Abstract

A differential phase shift keying homodyne optical receiver is experimentally demonstrated based on time-switching phase diversity, without the need for a 90° optical hybrid. It achieves high tolerance to phase noise and feasible implementation with off-the-shelf electrical and optical components.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Betti, G. de Marchis, and E. Iannone, Coherent Optical Communications Systems (Wiley, 1995).
  2. L. Kazovsky, in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2005), paper OTuL3.
  3. F. Derr, J. Lightwave Technol. 10, 1290 (1992).
    [CrossRef]
  4. R. Noé, J. Lightwave Technol. 23, 802 (2005).
    [CrossRef]
  5. M. G. Taylor, IEEE Photon. Technol. Lett. 16, 674 (2004).
    [CrossRef]
  6. L. Kazovsky, J. Lightwave Technol. 7, 279 (1989).
    [CrossRef]
  7. Y. H. Cheng, T. Okoshi, and O. Ishida, J. Lightwave Technol. 7, 368 (1989).
    [CrossRef]
  8. I. M. I. Habbab, J. M. Khan, and L. J. Greenstein, Electron. Lett. 24, 975 (1988).
    [CrossRef]
  9. K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, J. Lightwave Technol. 2, 1024 (1984).
    [CrossRef]
  10. J. Prat and J. M. Fabrega, in European Conference on Optical Communications 2005 (Institution of Electrical Engineers, 2005), paper We4.P.104.
  11. M. G. Taylor, in European Conference on Optical Communications 2005 (Institution of Electrical Engineers, 2005), paper Tu4.2.6.

2005

2004

M. G. Taylor, IEEE Photon. Technol. Lett. 16, 674 (2004).
[CrossRef]

1992

F. Derr, J. Lightwave Technol. 10, 1290 (1992).
[CrossRef]

1989

L. Kazovsky, J. Lightwave Technol. 7, 279 (1989).
[CrossRef]

Y. H. Cheng, T. Okoshi, and O. Ishida, J. Lightwave Technol. 7, 368 (1989).
[CrossRef]

1988

I. M. I. Habbab, J. M. Khan, and L. J. Greenstein, Electron. Lett. 24, 975 (1988).
[CrossRef]

1984

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, J. Lightwave Technol. 2, 1024 (1984).
[CrossRef]

Betti, S.

S. Betti, G. de Marchis, and E. Iannone, Coherent Optical Communications Systems (Wiley, 1995).

Cheng, Y. H.

Y. H. Cheng, T. Okoshi, and O. Ishida, J. Lightwave Technol. 7, 368 (1989).
[CrossRef]

de Marchis, G.

S. Betti, G. de Marchis, and E. Iannone, Coherent Optical Communications Systems (Wiley, 1995).

Derr, F.

F. Derr, J. Lightwave Technol. 10, 1290 (1992).
[CrossRef]

Fabrega, J. M.

J. Prat and J. M. Fabrega, in European Conference on Optical Communications 2005 (Institution of Electrical Engineers, 2005), paper We4.P.104.

Greenstein, L. J.

I. M. I. Habbab, J. M. Khan, and L. J. Greenstein, Electron. Lett. 24, 975 (1988).
[CrossRef]

Habbab, I. M. I.

I. M. I. Habbab, J. M. Khan, and L. J. Greenstein, Electron. Lett. 24, 975 (1988).
[CrossRef]

Henmi, N.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, J. Lightwave Technol. 2, 1024 (1984).
[CrossRef]

Iannone, E.

S. Betti, G. de Marchis, and E. Iannone, Coherent Optical Communications Systems (Wiley, 1995).

Ishida, O.

Y. H. Cheng, T. Okoshi, and O. Ishida, J. Lightwave Technol. 7, 368 (1989).
[CrossRef]

Kazovsky, L.

L. Kazovsky, J. Lightwave Technol. 7, 279 (1989).
[CrossRef]

L. Kazovsky, in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2005), paper OTuL3.

Khan, J. M.

I. M. I. Habbab, J. M. Khan, and L. J. Greenstein, Electron. Lett. 24, 975 (1988).
[CrossRef]

Kikuchi, K.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, J. Lightwave Technol. 2, 1024 (1984).
[CrossRef]

Nagamatsu, M.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, J. Lightwave Technol. 2, 1024 (1984).
[CrossRef]

Noé, R.

Okoshi, T.

Y. H. Cheng, T. Okoshi, and O. Ishida, J. Lightwave Technol. 7, 368 (1989).
[CrossRef]

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, J. Lightwave Technol. 2, 1024 (1984).
[CrossRef]

Prat, J.

J. Prat and J. M. Fabrega, in European Conference on Optical Communications 2005 (Institution of Electrical Engineers, 2005), paper We4.P.104.

Taylor, M. G.

M. G. Taylor, IEEE Photon. Technol. Lett. 16, 674 (2004).
[CrossRef]

M. G. Taylor, in European Conference on Optical Communications 2005 (Institution of Electrical Engineers, 2005), paper Tu4.2.6.

Electron. Lett.

I. M. I. Habbab, J. M. Khan, and L. J. Greenstein, Electron. Lett. 24, 975 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

M. G. Taylor, IEEE Photon. Technol. Lett. 16, 674 (2004).
[CrossRef]

J. Lightwave Technol.

L. Kazovsky, J. Lightwave Technol. 7, 279 (1989).
[CrossRef]

Y. H. Cheng, T. Okoshi, and O. Ishida, J. Lightwave Technol. 7, 368 (1989).
[CrossRef]

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, J. Lightwave Technol. 2, 1024 (1984).
[CrossRef]

F. Derr, J. Lightwave Technol. 10, 1290 (1992).
[CrossRef]

R. Noé, J. Lightwave Technol. 23, 802 (2005).
[CrossRef]

Other

J. Prat and J. M. Fabrega, in European Conference on Optical Communications 2005 (Institution of Electrical Engineers, 2005), paper We4.P.104.

M. G. Taylor, in European Conference on Optical Communications 2005 (Institution of Electrical Engineers, 2005), paper Tu4.2.6.

S. Betti, G. de Marchis, and E. Iannone, Coherent Optical Communications Systems (Wiley, 1995).

L. Kazovsky, in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2005), paper OTuL3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Proposed receiver scheme.

Fig. 2
Fig. 2

BER floor for several cases: theoretical (dashed curve), theoretical but including the penalty due to phase switching (dotted curve), numerical simulation (continuous curve), and measurements (square).

Fig. 3
Fig. 3

Experimental setup (the electrical processing block corresponds to the scheme shown in Fig. 1). OSC, oscilloscope; ESA, electrical spectrum analyzer. Other abbreviations defined in text.

Fig. 4
Fig. 4

Sensitivity results and output eye diagram.

Fig. 5
Fig. 5

Measured BER as a function of the laser frequency drift.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V out = ( C 2 2 ) d ( t ) d ( t T b ) [ cos ( ϕ e ( t ) ϕ e ( t T b ) ) + cos ( ϕ e ( t ) + ϕ e ( t T b ) ) + cos ( ϕ e ( t T b 2 ) ϕ e ( t 3 T b 2 ) ) cos ( ϕ e ( t T b 2 ) + ϕ e ( t 3 T b 2 ) ) ] ,
V out = C 2 d ( t ) d ( t T b ) [ 1 sin 2 ( Δ ϕ 1 ( t ) + Δ ϕ 2 ( t ) 2 ) sin 2 ( Δ ϕ 2 ( t ) + Δ ϕ 3 ( t ) 2 ) ) + 1 2 cos ( 2 ϕ e ( t ) ) ( 2 cos ( Δ ϕ 1 ( t ) + Δ ϕ 2 ( t ) ) sin 2 ( Δ ϕ 1 ( t ) + Δ ϕ 3 ( t ) 2 ) + sin ( Δ ϕ 1 ( t ) + Δ ϕ 2 ( t ) ) sin ( Δ ϕ 1 ( t ) + Δ ϕ 3 ( t ) ) ) [ + 1 2 sin ( 2 ϕ e ( t ) ) ( 2 sin ( Δ ϕ 1 ( t ) + Δ ϕ 2 ( t ) ) sin 2 ( Δ ϕ 1 ( t ) + Δ ϕ 3 ( t ) 2 ) cos ( Δ ϕ 1 ( t ) + Δ ϕ 2 ( t ) ) sin ( Δ ϕ 1 ( t ) + Δ ϕ 3 ( t ) ) ) ] ,
Δ ϕ 1 ( t ) = ϕ e ( t ) ϕ e ( t T b 2 ) ,
Δ ϕ 2 ( t ) = ϕ e ( t T b 2 ) ϕ e ( t T b ) ,
Δ ϕ 3 ( t ) = ϕ e ( t T b ) ϕ e ( t 3 T b 2 ) .

Metrics