Abstract

We demonstrate a novel method that enables one to measure the structure of highly reflecting fiber Bragg gratings. The method is based on measuring both the transmission and reflection spectra of the grating and applying an inverse-scattering algorithm. The use of the transmission spectrum significantly reduces the sensitivity of the reconstruction to measurement noise, and therefore it significantly decreases the measurement duration. We experimentally demonstrate our method for reconstructing the structure of an apodized grating with a reflectivity of 99.91%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Buryak and D. Y. Stepanov, Opt. Lett. 27, 1099 (2002).
    [CrossRef]
  2. S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
    [CrossRef]
  3. J. Skaar and R. Feced, J. Opt. Soc. Am. A 19, 2229 (2002).
    [CrossRef]
  4. A. Rosenthal and M. Horowitz, J. Opt. Soc. Am. A 22, 84 (2005).
    [CrossRef]
  5. L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, IEEE Photon. Technol. Lett. 15, 449 (2003).
    [CrossRef]
  6. O. H. Waagaard, J. Lightwave Technol. 23, 909 (2005).
    [CrossRef]
  7. A. Rosenthal and M. Horowitz, IEEE J. Quantum Electron. 39, 1018 (2003).
    [CrossRef]
  8. S. Keren and M. Horowitz, Opt. Lett. 26, 328 (2001).
    [CrossRef]
  9. P. J. de Groot, J. Opt. Soc. Am. A 12, 354 (1995).
    [CrossRef]

2005

2003

S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
[CrossRef]

L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, IEEE Photon. Technol. Lett. 15, 449 (2003).
[CrossRef]

A. Rosenthal and M. Horowitz, IEEE J. Quantum Electron. 39, 1018 (2003).
[CrossRef]

2002

2001

1995

Baskin, L. M.

L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, IEEE Photon. Technol. Lett. 15, 449 (2003).
[CrossRef]

Buryak, A. V.

de Groot, P. J.

Eggleton, B. J.

L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, IEEE Photon. Technol. Lett. 15, 449 (2003).
[CrossRef]

Feced, R.

Horowitz, M.

A. Rosenthal and M. Horowitz, J. Opt. Soc. Am. A 22, 84 (2005).
[CrossRef]

S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
[CrossRef]

A. Rosenthal and M. Horowitz, IEEE J. Quantum Electron. 39, 1018 (2003).
[CrossRef]

S. Keren and M. Horowitz, Opt. Lett. 26, 328 (2001).
[CrossRef]

Keren, S.

S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
[CrossRef]

S. Keren and M. Horowitz, Opt. Lett. 26, 328 (2001).
[CrossRef]

Reyes, P. I.

L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, IEEE Photon. Technol. Lett. 15, 449 (2003).
[CrossRef]

Rosenthal, A.

A. Rosenthal and M. Horowitz, J. Opt. Soc. Am. A 22, 84 (2005).
[CrossRef]

S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
[CrossRef]

A. Rosenthal and M. Horowitz, IEEE J. Quantum Electron. 39, 1018 (2003).
[CrossRef]

Skaar, J.

Stepanov, D. Y.

Sumetsky, M.

L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, IEEE Photon. Technol. Lett. 15, 449 (2003).
[CrossRef]

Waagaard, O. H.

Westbrook, P. S.

L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, IEEE Photon. Technol. Lett. 15, 449 (2003).
[CrossRef]

IEEE J. Quantum Electron.

A. Rosenthal and M. Horowitz, IEEE J. Quantum Electron. 39, 1018 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Keren, A. Rosenthal, and M. Horowitz, IEEE Photon. Technol. Lett. 15, 575 (2003).
[CrossRef]

L. M. Baskin, M. Sumetsky, P. S. Westbrook, P. I. Reyes, and B. J. Eggleton, IEEE Photon. Technol. Lett. 15, 449 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic description of experimental setup used for measuring structure of strong FBGs. FBG is the interrogated fiber Bragg grating and M is a mirror. The intensity transmission spectrum and the interference spectrum between a reflection from the grating and a reference signal, obtained by using a mirror, are measured.

Fig. 2
Fig. 2

(a) Amplitude of the reflection spectrum, obtained from interference spectrum, (b) amplitude of the transmission spectrum of the grating, and (c) amplitude of the reflection spectrum after the correction.

Fig. 3
Fig. 3

Refractive index amplitude n 1 and the chirp extracted from both sides of the grating.

Fig. 4
Fig. 4

Profile of the grating, extracted from the reflection spectrum after performing the correction (solid curve) and before performing the correction obtained for both sides of the grating (dotted and dashed curves). The grating was extracted for two different measurement durations of (a) 1 ms and (b) 44 ms per wavelength measurement.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = r ( λ ) + e i k ( λ ) d L e i ϕ ( λ ) 2 S ( λ ) ,

Metrics